We describe an algorithm for animating time-dependent quantum wave functions in one dimension with very high accuracy. The algorithm employs the Crank–Nicholson approximation for the time dependence along with a Numerov extension of the discrete transparent boundary conditions described recently by Ehrhardt. We illustrate the power of this approach by simulating the decay of alpha particles from radioactive nuclei and the resonance scattering of electrons in a three-layer GaAs–GaAlAs sandwich.
The failure of conventional quantum theory to recognize time as an observable and to admit time operators is addressed. Instead of focusing on the existence of a time operator for a given Hamiltonian, we emphasize the role of the Hamiltonian as the generator of translations in time to construct time states. Taken together, these states constitute what we call a timeline. Such timelines are adequate for the representation of any physical state, and appear to exist even for the semi-bounded and discrete Hamiltonian systems ruled out by Pauli's theorem. However, the step from a timeline to a valid time operator requires additional assumptions that are not always met. Still, this approach illuminates the issues surrounding the construction of time operators, and establishes timelines as legitimate alternatives to the familiar coordinate and momentum bases of standard quantum theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.