The developmentally important hedgehog (Hh) pathway is activated by binding of Hh to patched (Ptch1), releasing smoothened (Smo) and the downstream transcription factor glioma associated (Gli) from inhibition. The mechanism behind Ptch1-dependent Smo inhibition remains unresolved. We now show that by mixing Ptch1-transfected and Ptch1 small interfering RNA–transfected cells with Gli reporter cells, Ptch1 is capable of non–cell autonomous repression of Smo. The magnitude of this non–cell autonomous repression of Smo activity was comparable to the fusion of Ptch1-transfected cell lines and Gli reporter cell lines, suggesting that it is the predominant mode of action. CHOD-PAP analysis of medium conditioned by Ptch1-transfected cells showed an elevated 3β-hydroxysteroid content, which we hypothesized to mediate the Smo inhibition. Indeed, the inhibition of 3β-hydroxysteroid synthesis impaired Ptch1 action on Smo, whereas adding the 3β-hydroxysteroid (pro-)vitamin D3 to the medium effectively inhibited Gli activity. Vitamin D3 bound to Smo with high affinity in a cyclopamine-sensitive manner. Treating zebrafish embryos with vitamin D3 mimicked the smo –/– phenotype, confirming the inhibitory action in vivo. Hh activates its signalling cascade by inhibiting Ptch1-dependent secretion of the 3β-hydroxysteroid (pro-)vitamin D3. This action not only explains the seemingly contradictory cause of Smith-Lemli-Opitz syndrome (SLOS), but also establishes Hh as a unique morphogen, because binding of Hh on one cell is capable of activating Hh-dependent signalling cascades on other cells.
Objective-Atherosclerosis is an inflammatory disease in which macrophage activation and lipid loading play a crucial role. In this study, we investigated expression and function of the NR4A nuclear receptor family, comprising Nur77 (NR4A1, TR3), Nurr1 (NR4A2), and NOR-1 (NR4A3) in human macrophages. Methods and Results-Nur77, Nurr1, and NOR-1 are expressed in early and advanced human atherosclerotic lesion macrophages primarily in areas of plaque activation/progression as detected by in situ-hybridization and immunohistochemistry. Protein expression localizes to the nucleus. Primary and THP-1 macrophages transiently express NR4A-factors in response to lipopolysaccharide and tumor necrosis factor ␣. Lentiviral overexpression of Nur77, Nurr1, or NOR-1 reduces expression and production of interleukin (IL)-1 and IL-6 proinflammatory cytokines and IL-8, macrophage inflammatory protein-1␣ and -1 and monocyte chemoattractant protein-1 chemokines. In addition, NR4A-factors reduce oxidized-low-density lipoprotein uptake, consistent with downregulation of scavenger receptor-A, CD36, and CD11b macrophage marker genes. Knockdown of Nur77 or NOR-1 with gene-specific lentiviral short-hairpin RNAs resulted in enhanced cytokine and chemokine synthesis, increased lipid loading, and augmented CD11b expression, demonstrating endogenous NR4A-factors to inhibit macrophage activation, foam-cell formation, and differentiation. A therosclerosis is a chronic inflammatory disease involving deregulation of both the immune system and lipid metabolism. 1,2 Macrophages, imperative in the innate immune system, are involved in the initiation, progression, and rupture of atherosclerotic lesions as well as in the initiation of smooth muscle cell (SMC)-rich pathologies like restenosis. 3,4 At the onset of atherosclerosis, monocytes are locally recruited to the arterial vessel wall, where these cells differentiate into macrophages. These intimal macrophages ingest modified lipid particles and become lipid-laden foam cells that form a so-called fatty streak. In advanced atherosclerotic lesions, macrophages are localized primarily around a central lipid core and at the shoulder region of the plaque. At the latter site, which is known to be prone to rupture, these cells may be involved in destabilization of the lesion. 5 Throughout the progression of atherosclerosis, macrophages produce proinflammatory cytokines, chemokines, growth factors, and matrix-degrading enzymes and are consequently crucial in the chronic inflammatory process in the diseased vessel wall. 6,7 Detailed knowledge on the molecular mechanisms involved in the inflammatory and metabolic processes in macrophages is essential to develop novel drug therapies against atherosclerosis. We hypothesized that NR4A nuclear receptors are key regulatory factors involved in modulation of these specific processes in macrophages. Conclusion-NR4A-factorsThe NR4A nuclear hormone receptors were first described as early response transcription factors expressed on stimulation by growth factors. 8 -...
The initiator of coagulation, full-length tissue factor (flTF), in complex with factor VIIa, influences angiogenesis through PAR-2. Recently, an alternatively spliced variant of TF (asTF) was discovered, in which part of the TF extracellular domain, the transmembrane, and cytoplasmic domains are replaced by a unique C terminus. Subcutaneous tumors produced by asTF-secreting cells revealed increased angiogenesis, but it remained unclear if and how angiogenesis is regulated by asTF. Here, we show that asTF enhances angiogenesis in matrigel plugs in mice, whereas a soluble form of flTF only modestly enhances angiogenesis. asTF dose-dependently upregulates angiogenesis ex vivo independent of either PAR-2 or VIIa. Rather, asTF was found to ligate integrins, resulting in downstream signaling. asTF-␣V3 integrin interaction induces endothelial cell migration, whereas asTFdependent formation of capillaries in vitro is dependent on ␣61 integrin. Finally, asTF-dependent aortic sprouting is sensitive to 1 and 3 integrin blockade and a TF-antibody that disrupts asTFintegrin interaction. We conclude that asTF, unlike flTF, does not affect angiogenesis via PAR-dependent pathways but relies on integrin ligation. These findings indicate that asTF may serve as a target to prevent pathological angiogenesis.cancer ͉ coagulation ͉ endothelial cells ͉ integrins
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.