The South Korean meteorological and environmental satellite GEO-KOMPSAT-2A (GK-2A) was launched into geostationary orbit at $128.2^{\circ}$ 128.2 ∘ East on 4 December 2018. The space weather observation aboard GK-2A is performed by the Korea Space Environment Monitor. It consists of three particle detectors, a charging monitor and a four-sensor Service Oriented Spacecraft Magnetometer (SOSMAG). The magnetometer design aims for avoiding strict magnetic cleanliness requirements for the hosting spacecraft and an automated on-board correction of the dynamic stray fields which are generated by the spacecraft. This is achieved through the use of two science grade fluxgate sensors on an approximately one meter long boom and two additional magnetoresistance sensors mounted within the spacecraft body. This paper describes the instrument design, discusses the ground calibration methods and results, presents the post-launch correction and calibration achievements based on the data which were acquired during the first year in orbit and demonstrates the in-flight performance of SOSMAG with two science cases. The dynamic stray fields from the GK-2A spacecraft, which was built without specific magnetic cleanliness considerations, are reduced up to a maximum factor of 35. The magnitude of the largest remnant field from an active spacecraft disturber is 2.0 nT. Due to a daily shadowing of the SOSMAG boom, sensor intrinsic offset oscillations with a periodicity up to 60 minutes and peak-to-peak values up to 5 nT remain in the corrected data product. The comparison of the cleaned SOSMAG data with the Tsyganenko 2004 magnetic field model and the magnetic field data from the Magnetospheric Multiscale mission demonstrates that the offset error is less than the required 5 nT for all three components and that the drift of the offsets over 10 months is less than 7 nT. Future work will include a further reduction of the remaining artefacts in the final data product with the focus on lessening the temperature driven sensor oscillations with an epoch based identification and correction.
GaN metal–oxide–semiconductor (MOS) capacitors were fabricated by using Ga oxide formed by photoelectrochemical oxidation of GaN. The electrical properties of the MOS structures as characterized by capacitance–voltage measurement were found to be dependent on the oxidation time and posttreatment. Positive flatband voltage was observed in devices with thin oxide layers indicating the existence of negative oxide charge. Very thin oxide exhibits high capacitance and reverse leakage, which can be reduced by rapid thermal annealing (RTA). Passivation of the interface by RTA is partially responsible for the improvement. Thicker oxide layers exhibit improved electrical properties. Low density of interface states (∼1011 eV−1 cm−2) was obtained in the Ga-oxide/GaN structure grown under optimized conditions.
In space weather research, the geostationary orbit has been of particular interest as it offers valuable opportunities for various disciplines such as meteorology, remote-sensing, communication, and military owing to its matching orbital period with that of the Earth's rotation. Previous space missions have repeatedly confirmed that geostationary orbits are usually immersed in outer radiation belts that are occupied by highly energetic,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.