Recognizing text from the nature scene images and videos has been the challenging task of computer vision and machine learning research community in recent years. These texts are difficult to recognize because of their shapes, complex backgrounds, color, shape and size variations. However, text recognition is very much useful in indexing, keyword-based image and video search, and information retrieval. In this research paper, a model is proposed to detect the isolated text characters in the photographic images of natural scenes. The proposed model uses the combination of Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) for recognizing the text in natural images. The model uses two networks, where the first network combines the low-level and middle-level features to increase the feature size and passes the enriched information to the second network. Here, features are again widened by combining with high-level features, resulting in powerful and robust features. To evaluate the proposed model, ICDAR2003 (IC03), ICDAR2013 (IC13), SVT (Street View Text) datasets have been used. And an extensive Tamil news tickers image dataset has been developed to evaluate the model. The experimental results show that the combined feature fusion technique outperforms the other methods on the ICDAR2003, ICDAR2013, SVT and Tamil news tickers datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.