The development of silicon photonics could greatly benefit from the linear electro-optical properties, absent in bulk silicon, of ferroelectric oxides, as a novel way to seamlessly connect the electrical and optical domain. Of all oxides, barium titanate exhibits one of the largest linear electro-optical coefficients, which has however not yet been explored for thin films on silicon. Here we report on the electro-optical properties of thin barium titanate films epitaxially grown on silicon substrates. We extract a large effective Pockels coefficient of r eff ¼ 148 pm V À 1 , which is five times larger than in the current standard material for electrooptical devices, lithium niobate. We also reveal the tensor nature of the electro-optical properties, as necessary for properly designing future devices, and furthermore unambiguously demonstrate the presence of ferroelectricity. The integration of electro-optical active films on silicon could pave the way towards power-efficient, ultra-compact integrated devices, such as modulators, tuning elements and bistable switches.
Carbon-based electronics is a promising alternative to traditional silicon-based electronics as it could enable faster, smaller and cheaper transistors, interconnects and memory devices. However, the development of carbon-based memory devices has been hampered either by the complex fabrication methods of crystalline carbon allotropes or by poor performance. Here we present an oxygenated amorphous carbon (a-COx) produced by physical vapour deposition that has several properties in common with graphite oxide. Moreover, its simple fabrication method ensures excellent reproducibility and tuning of its properties. Memory devices based on a-COx exhibit outstanding non-volatile resistive memory performance, such as switching times on the order of 10 ns and cycling endurance in excess of 10(4) times. A detailed investigation of the pristine, SET and RESET states indicates a switching mechanism based on the electrochemical redox reaction of carbon. These results suggest that a-COx could play a key role in non-volatile memory technology and carbon-based electronics.
A new superconducting state induced by an external magnetic field has been observed in the pseudoternary Eu-Sn molybdenum chalcogenides for different Eu concentrations. This phenomenon is explained in terms of the Jaccarino-Peter compensation effect which accounts correctly for the shape of the H c2 -T phase diagram.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.