Neuronal population codes are increasingly being investigated with multivariate pattern-information analyses. A key challenge is to use measured brain-activity patterns to test computational models of brain information processing. One approach to this problem is representational similarity analysis (RSA), which characterizes a representation in a brain or computational model by the distance matrix of the response patterns elicited by a set of stimuli. The representational distance matrix encapsulates what distinctions between stimuli are emphasized and what distinctions are de-emphasized in the representation. A model is tested by comparing the representational distance matrix it predicts to that of a measured brain region. RSA also enables us to compare representations between stages of processing within a given brain or model, between brain and behavioral data, and between individuals and species. Here, we introduce a Matlab toolbox for RSA. The toolbox supports an analysis approach that is simultaneously data- and hypothesis-driven. It is designed to help integrate a wide range of computational models into the analysis of multichannel brain-activity measurements as provided by modern functional imaging and neuronal recording techniques. Tools for visualization and inference enable the user to relate sets of models to sets of brain regions and to statistically test and compare the models using nonparametric inference methods. The toolbox supports searchlight-based RSA, to continuously map a measured brain volume in search of a neuronal population code with a specific geometry. Finally, we introduce the linear-discriminant t value as a measure of representational discriminability that bridges the gap between linear decoding analyses and RSA. In order to demonstrate the capabilities of the toolbox, we apply it to both simulated and real fMRI data. The key functions are equally applicable to other modalities of brain-activity measurement. The toolbox is freely available to the community under an open-source license agreement (http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/license/).
Current research suggests that language comprehension engages two joint but functionally distinguishable neurobiological processes: a distributed bilateral system, which supports general perceptual and interpretative processes underpinning speech comprehension, and a left hemisphere (LH) frontotemporal system, selectively tuned to the processing of combinatorial grammatical sequences, such as regularly inflected verbs in English [Marslen-Wilson, W. D., & Tyler, L. K. Morphology, language and the brain: The decompositional substrate for language comprehension. Philosophical Transactions of the Royal Society: Biological Sciences, 362, 823-836, 2007]. Here we investigated how English derivationally complex words engage these systems, asking whether they selectively activate the LH system in the same way as inflections or whether they primarily engage the bilateral system that support nondecompositional access. In an fMRI study, we saw no evidence for selective activation of the LH frontotemporal system, even for highly transparent forms like bravely. Instead, a combination of univariate and multivariate analyses revealed the engagement of a distributed bilateral system, modulated by factors of perceptual complexity and semantic transparency. We discuss the implications for theories of the processing and representation of English derivational morphology and highlight the importance of neurobiological constraints in understanding these processes.
The human conceptual system comprises simulated information of sensorimotor experience and linguistic distributional information of how words are used in language. Moreover, the linguistic shortcut hypothesis predicts that people will use computationally cheaper linguistic distributional information where it is sufficient to inform a task response. In a pre-registered category production study, we asked participants to verbally name members of concrete and abstract categories and tested whether performance could be predicted by a novel measure of sensorimotor similarity (based on an 11-dimensional representation of sensorimotor strength) and linguistic proximity (based on word co-occurrence derived from a large corpus). As predicted, both measures predicted the order and frequency of category production but, critically, linguistic proximity had an effect above and beyond sensorimotor similarity. A follow-up study using typicality ratings as an additional predictor found that typicality was often the strongest predictor of category production variables, but it did not subsume sensorimotor and linguistic effects. Finally, we created a novel, fully grounded computational model of conceptual activation during category production, which best approximated typical human performance when conceptual activation was allowed to spread indirectly between concepts, and when candidate category members came from both sensorimotor and linguistic distributional representations. Critically, model performance was indistinguishable from typical human performance. Results support the linguistic shortcut hypothesis in semantic processing and provide strong evidence that both linguistic and grounded All three authors contributed equally to the work.
Experimental design and computational modelling across the cognitive sciences often rely on measures of semantic similarity between concepts. Traditional measures of semantic similarity are typically derived from distance in taxonomic databases (e.g. WordNet), databases of participant-produced semantic features, or corpus-derived linguistic distributional similarity (e.g. CBOW), all of which are theoretically problematic in their lack of grounding in sensorimotor experience. We present a new measure of sensorimotor distance between concepts, based on multidimensional comparisons of their experiential strength across 11 perceptual and action-effector dimensions in the Lancaster Sensorimotor Norms. We demonstrate that, in modelling human similarity judgements, sensorimotor distance has comparable explanatory power to other measures of semantic similarity, explains variance in human judgements which is missed by other measures, and does so with the advantages of remaining both grounded and computationally efficient. Moreover, sensorimotor distance is equally effective for both concrete and abstract concepts. We further introduce a web-based tool (https://lancaster.ac.uk/psychology/smdistance) for easily calculating and visualising sensorimotor distance between words, featuring coverage of nearly 800 million word pairs. Supplementary materials are available at https://osf.io/d42q6/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.