Background: Hepatocellular carcinoma (HCC) is the leading cause of cancer death. Kinesin family member 2C (KIF2C) has been shown as oncogene in a variety of tumors. However, it's role in HCC remains unclear.Methods: In this study, the expression level of KIF2C in HCC was detected by immunohistochemical staining and RT-PCR, and verified by Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) and Oncomine database. A curve was established to evaluate the diagnostic efficiency of KIF2C. The effect of KIF2C on HCC was investigated by flow cytometry, Cell Counting Kit-8, Transwell, and the wound-healing assay. We explored the underlying mechanism through epithelial-to-mesenchymal transition (EMT) and transcriptome sequences analysis.Results: KIF2C was overexpression in HCC tissue and related to neoplasm histologic grade (P<0.001), pathology stage (P=0.001), and a dismal prognosis (overall, recurrence-free, and disease-free survival). The diagnostic efficacy of KIF2C was >90% in diagnosing HCC. The HCC cell function experiments showed that KIF2C promoted HCC cell proliferation, migration, invasion, and an accelerated cell cycle, and inhibited apoptosis. Based on western blot analysis and RT-PCR, we found that KIF2C promoted HCC invasion and metastasis through activation of the EMT. Based on transcriptome sequences, we showed that KIF2C promoted HCC through the Ras/MAPK and PI3K/Akt signaling pathway.Conclusions: KIF2C was found to promote the progression of HCC and is anticipated to serve as a biomarker for HCC diagnosis, prognosis, and targeted therapy.
As the first-line treatment, sorafenib has been used for advanced hepatocellular carcinoma (HCC), but the chemoresistance commonly restricts to the clinical efficiency. In this study, we intend to investigate the genome-wide expression pattern of long noncoding RNAs (lncRNAs) in sorafenib-resistant HCC. Herein, we identified thousands of differentially expressed lncRNAs in sorafenib-resistant HCC cells by high-throughput sequencing compared to the parental. Besides, based on GO (Gene Ontology) term enrichment analysis, these differentially expressed lncRNAs are mainly related to binding and catalytic activity and biological regulation of metabolic processes in both the sorafenib-resistant Huh7 cells (Huh7-S) and sorafenib-resistant HepG2 cells (HepG2-S) compared to the parental cells. Moreover, when analyzed by KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway, the differentially expressed genes were significantly related to the tight junction. Among them, the expression of TCONS_00284048 and TCONS_00006019 was consistently up-regulated in sorafenib-resistant HCC cell lines, whereas when either was knocked down, the sensitivity of Huh7-S and HepG2-S cells to sorafenib was increased. Taken together, our data demonstrate that the lncRNA expression profile is significantly altered in sorafenib-resistant HCC cells as well as differentially expressed lncRNAs may play crucial functions on HCC sorafenib resistance and HCC progression.
Introduction: This study implies the enhancement of apatinib killing effect in 4T1 tumor cells through constructing drug-loaded nanoparticles apatinib/Ce6@ZIF-8@Membranes (aCZM) to enhance tumor therapeutic targeting and reduce toxic side following sonodynamic therapy (SDT). Methods: apatinib/Ce6@ZIF-8 (aCZ) were synthesized by in situ encapsulation, and aCZM were constructed by encapsulating the nanoparticles with extracted breast cancer 4T1 cell membranes. aCZM were characterized and tested for the stability by electron microscopy, and the membrane proteins on the nanoparticles’ surface were assessed using SDS-PAGE gel electrophoresis. The cell viability of 4T1 cells following treatment with aCZM was tested using cell counting kit-8 (CCK-8). The uptake of nanoparticles was detected by laser confocal microscopy and flow cytometry, and the SDT-mediated production of reactive oxygen species (ROS) was verified by singlet oxygen sensor green (SOSG), electron spin resonance (ESR), and DCFH-DA fluorescent probes. The CCK-8 assay and flow cytometry using Calcein/PI were used to assess the antitumoral effect of aCZM nanoparticles under SDT. The biosafety of aCZM was further verified in vitro and in vivo using the hemolysis assay, routine blood test and H&E staining of vital organs in Balb/c mice. Results: aCZM with an average particle size of about 210.26 nm were successfully synthesized. The results of the SDS-PAGE gel electrophoresis experiment showed that aCZM have a band similar to that of pure cell membrane proteins. The CCK-8 assay demonstrated the absence of effects on cell viability at a low concentration range, and the relative cell survival rate reached more than 95%. Laser confocal microscopy and flow cytometry analysis showed that aCZM treated group has the strongest fluorescence and the highest cellular uptake of nanoparticles. SOSG, ESR, and DCFH-DA fluorescent probes all indicated that the aCZM + SDT treated group has the highest ROS production. The CCK-8 assay also showed that when the ultrasound intensity was fixed at 0.5 W/cm2, the relative cell survival rates in the medium concentration group (10 μg/ml) (5.54 ± 1.26%) and the high concentration group (20 μg/ml) (2.14 ± 1.63%) were significantly lower than those in the low concentration group (5 μg/ml) (53.40 ± 4.25%). Moreover, there was a concentration and intensity dependence associated with the cell-killing effect. The mortality rate of the aCZM in the ultrasound group (44.95±3.03%) was significantly higher than that of the non-ultrasound (17.00±2.26%) group and aCZ + SDT group (24.85 ± 3.08%) (P<0.0001). The live and dead cells’ staining (Calcein/PI) also supported this result. Finally, in vitro hemolysis test at 4 and 24 hours showed that the hemolysis rate of the highest concentration group was less than 1%. The blood routine, biochemistry, and H&E staining results of major organs in Balb/c mice undergoing nano-treatments showed no obvious functional abnormalities and tissue damage in 30 days. Conclusion: In this study, a multifunctional bionic drug delivery nanoparticles (aCZM) system with good biosafety and compatibility in response to acoustic dynamics was successfully constructed and characterized. This system enhanced apatinib killing effect on tumor cells and reduced toxic side effects under SDT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.