Large-scale geographical patterns of biotic specialization and the underlying drivers are poorly understood, but it is widely believed that climate plays an important role in determining specialization. As climate-driven range dynamics should diminish local adaptations and favor generalization, one hypothesis is that contemporary biotic specialization is determined by the degree of past climatic instability, primarily Quaternary climate-change velocity. Other prominent hypotheses predict that either contemporary climate or species richness affect biotic specialization. To gain insight into geographical patterns of contemporary biotic specialization and its drivers, we use network analysis to determine the degree of specialization in plant-hummingbird mutualistic networks sampled at 31 localities, spanning a wide range of climate regimes across the Americas. We found greater biotic specialization at lower latitudes, with latitude explaining 20–22% of the spatial variation in plant-hummingbird specialization. Potential drivers of specialization - contemporary climate, Quaternary climate-change velocity, and species richness - had superior explanatory power, together explaining 53–64% of the variation in specialization. Notably, our data provides empirical evidence for the hypothesized roles of species richness, contemporary precipitation and Quaternary climate-change velocity as key predictors of biotic specialization, whereas contemporary temperature and seasonality seem unimportant in determining specialization. These results suggest that both ecological and evolutionary processes at Quaternary time scales can be important in driving large-scale geographical patterns of contemporary biotic specialization, at least for co-evolved systems such as plant-hummingbird networks.
We reviewed the occurrences and distributional patterns of migratory species of birds in Brazil. A species was classified as migratory when at least part of its population performs cyclical, seasonal movements with high fidelity to its breeding grounds. Of the 1,919 species of birds recorded in Brazil, 198 (10.3%) are migratory. Of these, 127 (64%) were classified as Migratory and 71 (36%) as Partially Migratory. A few species (83; 4.3%) were classified as Vagrant and eight (0,4%) species could not be defined due to limited information available, or due to conflicting data.
Aim To investigate the association between hummingbird–plant network structure and species richness, phylogenetic signal on species' interaction pattern, insularity and historical and current climate. Location Fifty‐four communities along a c. 10,000 km latitudinal gradient across the Americas (39° N–32° S), ranging from sea level to c. 3700 m a.s.l., located on the mainland and on islands and covering a wide range of climate regimes. Methods We measured the level of specialization and modularity in mutualistic plant–hummingbird interaction networks. Using an ordinary least squares multimodel approach, we examined the influence of species richness, phylogenetic signal, insularity and current and historical climate conditions on network structure (null‐model‐corrected specialization and modularity). Results Phylogenetically related species, especially plants, showed a tendency to interact with a similar array of mutualistic partners. The spatial variation in network structure exhibited a constant association with species phylogeny (R2 = 0.18–0.19); however, network structure showed the strongest association with species richness and environmental factors (R2 = 0.20–0.44 and R2 = 0.32–0.45, respectively). Specifically, higher levels of specialization and modularity were associated with species‐rich communities and communities in which closely related hummingbirds visited distinct sets of flowering species. On the mainland, specialization was also associated with warmer temperatures and greater historical temperature stability. Main conclusions Our results confirm the results of previous macroecological studies of interaction networks which have highlighted the importance of species richness and the environment in determining network structure. Additionally, for the first time, we report an association between network structure and species phylogenetic signal at a macroecological scale, indicating that high specialization and modularity are associated with high interspecific competition among closely related hummingbirds, subdividing the floral niche. This suggests a tighter co‐evolutionary association between hummingbirds and their plants than in previously studied plant–bird mutualistic systems.
Palavras-chave -beija-flores, biologia floral, Bromeliaceae, fenologia, Mata Atlântica IntroduçãoBromeliaceae está entre as poucas famílias em que a polinização por vertebrados predomina sobre a polinização por insetos (Sazima et al. 1989). Sick (1984) sugere que a diversificação das famílias Bromeliaceae e Trochilidae tenha se processado paralelamente, pois esta última contém os agentes polinizadores mais importantes para as bromélias. Essa idéia tem sido corroborada por diversos estudos que apontam os beijaflores como vetores de pólen de cerca de 85% das bromeliáceas nas diferentes comunidades investigadas, sendo as demais espécies visitadas por morcegos e, em menor quantidade, abelhas (Snow & Snow 1980, Snow & Teixeira 1982, Gardner 1986, Fischer & Araujo 1995, Sazima et al. 1995, 1996, Canela & Sazima 2003, Araujo et al. 2004.A fenologia e polinização de Bromeliaceae têm sido relativamente pouco investigadas. O padrão fenológico de uma comunidade vegetal é relevante no estudo da interação planta-animal, pois propicia importante ferramenta para o entendimento da reprodução das plantas e da organização espaço-temporal dos recursos disponíveis no ambiente aos animais associados
Interactions between species are influenced by different ecological mechanisms, such as morphological matching, phenological overlap and species abundances. How these mechanisms explain interaction frequencies across environmental gradients remains poorly understood. Consequently, we also know little about the mechanisms that drive the geographical patterns in network structure, such as complementary specialization and modularity. Here, we use data on morphologies, phenologies and abundances to explain interaction frequencies between hummingbirds and plants at a large geographical scale. For 24 quantitative networks sampled throughout the Americas, we found that the tendency of species to interact with morphologically matching partners contributed to specialized and modular network structures. Morphological matching best explained interaction frequencies in networks found closer to the equator and in areas with low-temperature seasonality. When comparing the three ecological mechanisms within networks, we found that both morphological matching and phenological overlap generally outperformed abundances in the explanation of interaction frequencies. Together, these findings provide insights into the ecological mechanisms that underlie geographical patterns in resource specialization. Notably, our results highlight morphological constraints on interactions as a potential explanation for increasing resource specialization towards lower latitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.