A meta-analysis was conducted to compare treatment outcomes and adverse events of radiotherapy with concurrent platinum-based doublet/single-agent therapy. • Concurrent RT with platinum-based doublet chemotherapy significantly improved the OS and PFS. • Grade 3 or 4 vomiting, thrombocytopenia, and urinary system toxicity were more frequent in the polychemotherapy arm.
Background The snoRNA host gene SNHG15 produces a long non-coding RNA (lncRNA) with a short half-life and has been reported to be dysregulated in multiple cancers and has recently been found to be correlated with tumour progression. Therefore, this meta-analysis was performed to evaluate the generalised prognostic role of small nucleolar RNA host gene 15 (SNHG15) in malignancies, based on variable data from different studies. Methods Four public databases were used to identify eligible studies. The association between prognostic indicators and clinical features was extracted and pooled to estimate the hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs). Publication bias was measured using Begg’s test and Egger’s test, and the stability of pooled results were measured using sensitivity analysis. Additionally, an online database based on The Cancer Genome Atlas (TCGA) was screened to further validate our results. Ultimately, we predicted the molecular regulation of SNHG15 based on the public databases. Results In total, 11 studies including 1087 patients were ultimately enrolled in our meta-analysis. We found that SNHG15 overexpression was associated with worse overall survival (OS) and disease-free survival (DFS), and this was validated in the Gene Expression Profiling Interactive Analysis (GEPIA) cohort. Moreover, increased SNHG15 expression suggested advanced TNM stage and LNM, but was not associated with age, gender, or tumour size. No publication bias or instability of the results was observed. SNHG15 was significantly upregulated in seven cancers and elevated expression of SNHG15 indicated shorter OS and DFS in five malignancies based on the validation using the GEPIA cohort. Further functional prediction indicated that SNHG15 may participate in some cancer-related pathways. Conclusions Upregulation of lncRNA SNHG15 was notably associated with worse prognosis and clinical features, suggesting that SNHG15 might serve as a novel prognostic factor in various cancers.
Male-sterile mutants are useful materials to study the anther and pollen development. Here, whole transcriptome sequencing was performed for inflorescences in three sterile lines of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis), the genic male-sterile line (A line), the Polima cytoplasmic male-sterile (CMS) line (P line), and the Ogura CMS line (O line) along with their maintainer line (B line). In total, 7,136 differentially expressed genes (DEGs), 361 differentially expressed long non-coding RNAs (lncRNAs) (DELs), 56 differentially expressed microRNAs (miRNAs) (DEMs) were selected out. Specific regulatory networks related to anther cell differentiation, meiosis cytokinesis, pollen wall formation, and tapetum development were constructed based on the abortion characteristics of male-sterile lines. Candidate genes and lncRNAs related to cell differentiation were identified in sporocyteless P line, sixteen of which were common to the DEGs in Arabidopsis spl/nzz mutant. Genes and lncRNAs concerning cell plate formation were selected in A line that is defected in meiosis cytokinesis. Also, the orthologs of pollen wall formation and tapetum development genes in Arabidopsis showed distinct expression patterns in the three different sterile lines. Among 361 DELs, 35 were predicted to interact with miRNAs, including 28 targets, 47 endogenous target mimics, and five precursors for miRNAs. Two lncRNAs were further proved to be functional precursors for bra-miR156 and bra-miR5718, respectively. Overexpression of bra-miR5718HG in B. campestris slowed down the growth of pollen tubes, caused shorter pollen tubes, and ultimately affected the seed set. Our study provides new insights into molecular regulation especially the ncRNA interaction during pollen development in Brassica crops.
Cancer incidence rate has increased so much that it is the second leading cause of deaths worldwide after cardiovascular diseases. Sensitive and specific biomarkers are needed for an early diagnosis of cancer and in-time treatment. Recent studies have found that long non-coding RNAs (lncRNAs) participate in cancer tumorigenesis. LncRNA P73 antisense RNA 1T (TP73-AS1), also known as KIAA0495 and p53-dependent apoptosis modulator (PDAM), is located in human chromosomal band 1p36.32 and plays a crucial role in many different carcinomas. This review summarizes current findings on the role of TP73-AS1 and its signaling pathways in various cancers, including glioma, esophageal squamous cell carcinoma (ESCC), hepatocellular carcinoma (HCC), colorectal cancer (CRC), osteosarcoma, gastric cancer (GC), clear cell renal cell carcinoma (ccRCC), breast cancer (BC), bladder cancer, ovarian cancer, cholangiocarcinoma (CCA), lung cancer, and pancreatic cancer. Its aberrant expression generally correlates with clinicopathological characterization of patients. Moreover, TP73-AS1 regulates proliferation, migration, invasion, apoptosis, and chemoresistance cancer mechanisms, both in vivo and in vitro, through different signaling pathways. Therefore, TP73-AS1 may be considered as a marker for diagnosis and prognosis, also as a target for cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.