Preparing molecular coordinate files for molecular dynamics (MD) simulations can be a very time‐consuming process. Herein we present the development of a user‐friendly program that drastically reduces the time required to prepare these molecular coordinate files for MD software packages such as AmberTools. Our program, known as charge atomtype naming (CAN), creates and uses a library of structures such as amino acid monomers to update the charge, atom type, and name of atoms in any molecular structure (mol2) file. We demonstrate the utility of this new program by rapidly preparing structural files for MD simulations for polypeptides ranging from small molecules to large protein structures. Both native and non‐native amino acid residues are easily handled by this new program.
We report the catalytic activity of two phosphinoimidazolederived bimetallic palladium complexes in Pd-catalyzed amination reactions. Our studies demonstrate that the starting oxidation state (Pd(I) or Pd(II)) of the dimeric complex has a significant effect on the efficiency of the catalytic reaction. The corresponding Pd(I) complex shows higher reactivity in Buchwald−Hartwig aminations, while the Pd(II) complex is much more reactive in carbonylative amination reactions. These new dimeric palladium complexes provide good to excellent reactivity and yields in the amination reactions tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.