The ID NOW COVID-19 assay is a promising tool for the rapid identification of COVID-19 patients. However, its performances were questioned. We evaluate the ID NOW COVID-19 in comparison to a reference RT-PCR using a collection of 48 fresh nasopharyngeal swabs sampled on universal transport media (UTM). Only 2 false negatives of the ID NOW COVID-19 were identified. They display PCR cycle threshold values of 37.5 and 39.2. The positive percent agreement and the negative percent agreement were 94.9% and 100%, respectively. The Kappa value was 0.88. The ID NOW COVID-19 combines high-speed and accurate processing. Using UTM, the ID NOW COVID-19 could be repeated in the case of invalid result. Further analyses, such as screening of genetic variants or genome sequencing, could also be performed with the same sample. As for all tests, the results should be interpreted according to clinical and epidemiological context.
Plain propofol formulations are not equipotent, but comparable doses were required when lidocaine was concomitantly administered.
Repetitive elements can cause large‐scale chromosomal rearrangements, for example through ectopic recombination, potentially promoting reproductive isolation and speciation. Species with holocentric chromosomes, that lack a localized centromere, might be more likely to retain chromosomal rearrangements that lead to karyotype changes such as fusions and fissions. This is because chromosome segregation during cell division should be less affected than in organisms with a localized centromere. The relationships between repetitive elements and chromosomal rearrangements and how they may translate to patterns of speciation in holocentric organisms are though poorly understood. Here, we use a reference‐free approach based on low‐coverage short‐read sequencing data to characterize the repeat landscape of two independently evolved holocentric groups: Erebia butterflies and Carex sedges. We consider both micro‐ and macro‐evolutionary scales to investigate the repeat landscape differentiation between Erebia populations and the association between repeats and karyotype changes in a phylogenetic framework for both Erebia and Carex. At a micro‐evolutionary scale, we found population differentiation in repeat landscape that increases with overall intraspecific genetic differentiation among four Erebia species. At a macro‐evolutionary scale, we found indications for an association between repetitive elements and karyotype changes along both Erebia and Carex phylogenies. Altogether, our results suggest that repetitive elements are associated with the level of population differentiation and chromosomal rearrangements in holocentric clades and therefore likely play a role in adaptation and potentially species diversification.
High reciprocal pollination specialization leading to pollinator isolation can prevent interspecific pollen transfer and competition for pollinators. Sharing pollinators may induce mating costs, but it may also increase pollination services and pollen dispersal and offer more resources to pollinators, which may be important in case of habitat fragmentation leading to pollination disruption. We estimated pollen dispersal and pollinator isolation or sharing between two reproductively isolated genetic lineages of Silene nutans (Caryophyllaceae), which are rare and occur in parapatry in southern Belgium, forming two edaphic ecotypes. As inter-ecotypic crosses may lead to pollen wastage and inviable progeny, pollinator isolation might have evolved between ecotypes. Silene nutans is mainly pollinated by nocturnal moths, including nursery pollinators, which pollinate and lay their eggs in flowers, and whose caterpillars feed on flowers and seeds. Pollinator assemblages of the two ecotypes are largely unknown and inter-ecotypic pollen flows have never been investigated. Fluorescent powdered dyes were used as pollen analogues to quantify intra- and inter-ecotypic pollen transfers and seeds were germinated to detect chlorotic seedlings resulting from inter-ecotypic pollination. Nocturnal pollinators were observed using infrared cameras on the field, and seed-eating caterpillars were collected and reared to identify nursery pollinator species. No pollinator isolation was found: we detected long-distance (up to 5 km) inter-ecotypic dye transfers and chlorotic seedlings, indicating inter-ecotypic fertilization events. The rare moth Hadena albimacula, a nursery pollinator specialized on S. nutans, was found on both ecotypes, as well as adults visiting flowers (cameras recordings) as seed-eating caterpillars. However, S. nutans populations harbor different abundance and diversity of seed predator communities, including other rare nursery pollinators, suggesting a need for distinct conservation strategies. Our findings demonstrate the efficiency of moths, especially of nursery pollinators, to disperse pollen over long distances in natural landscapes, so to ensure gene flow and population sustainability of the host plant. Seed-predator specificities between the two reproductively isolated genetic lineages of S. nutans, and pollinator sharing instead of pollinator isolation when plants occur in parapatry, suggest that conservation of the host plant is also essential for sustaining (rare) pollinator and seed predator communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.