As AI becomes more widely used across a variety of disciplines, it is increasingly important to teach AI concepts to K-12 students in order to prepare them for an AI-driven future workforce. Hence, educators and researchers have been working to develop curricula that make these concepts accessible to K-12 students. We are designing and developing a comprehensive AI curriculum delivered through a series of carefully crafted activities in an adapted \emph{Snap!} environment for middle-grade students. In this work, we lay out the proposed content of our curriculum and present the design, development, and implementation results of the first unit of our curriculum that focuses on teaching the breadth-first search algorithm. The activities in this unit have been revised after being piloted with a single high-school student. These activities were further refined after a group of K-12 teachers examined and critiqued them during a two-week professional development workshop. Our teachers created a lesson plan around the activities and implemented that lesson in a summer workshop with 14 middle school students. Our results demonstrated that our activities were successful in helping many of the students in understanding and implementing the algorithm through block-based programming while extra supplementary material was needed to assist some other students. In this paper, we explain our curriculum and technology, the results of implementing the first unit of our curriculum in a summer camp, and lessons learned for future developments.
Augmented reality (AR) has the potential to fundamentally transform science education by making learning of abstract science ideas tangible and engaging. However, little is known about how students interacted with AR technologies and how these interactions may affect learning performance in science laboratories. This study examined high school students’ navigation patterns and science learning with a mobile AR technology, developed by the research team, in laboratory settings. The AR technology allows students to conduct hands-on laboratory experiments and interactively explore various science phenomena covering biology, chemistry, and physics concepts. In this study, seventy ninth-grade students carried out science laboratory experiments in pairs to learn thermodynamics. Our cluster analysis identified two groups of students, which differed significantly in navigation length and breadth. The two groups demonstrated unique navigation patterns that revealed students’ various ways of observing, describing, exploring, and evaluating science phenomena. These navigation patterns were associated with learning performance as measured by scores on lab reports. The results suggested the need for providing access to multiple representations and different types of interactions with these representations to support effective science learning as well as designing representations and connections between representations to cultivate scientific reasoning skills and nuanced understanding of scientific processes.
To date, many AI initiatives (eg, AI4K12, CS for All) developed standards and frameworks as guidance for educators to create accessible and engaging Artificial Intelligence (AI) learning experiences for K‐12 students. These efforts revealed a significant need to prepare youth to gain a fundamental understanding of how intelligence is created, applied, and its potential to perpetuate bias and unfairness. This study contributes to the growing interest in K‐12 AI education by examining student learning of modelling real‐world text data. Four students from an Advanced Placement computer science classroom at a public high school participated in this study. Our qualitative analysis reveals that the students developed nuanced and in‐depth understandings of how text classification models—a type of AI application—are trained. Specifically, we found that in modelling texts, students: (1) drew on their social experiences and cultural knowledge to create predictive features, (2) engineered predictive features to address model errors, (3) described model learning patterns from training data and (4) reasoned about noisy features when comparing models. This study contributes to an initial understanding of student learning of modelling unstructured data and offers implications for scaffolding in‐depth reasoning about model decision making. Practitioner notes What is already known about this topic Scholarly attention has turned to examining Artificial Intelligence (AI) literacy in K‐12 to help students understand the working mechanism of AI technologies and critically evaluate automated decisions made by computer models. While efforts have been made to engage students in understanding AI through building machine learning models with data, few of them go in‐depth into teaching and learning of feature engineering, a critical concept in modelling data. There is a need for research to examine students' data modelling processes, particularly in the little‐researched realm of unstructured data. What this paper adds Results show that students developed nuanced understandings of models learning patterns in data for automated decision making. Results demonstrate that students drew on prior experience and knowledge in creating features from unstructured data in the learning task of building text classification models. Students needed support in performing feature engineering practices, reasoning about noisy features and exploring features in rich social contexts that the data set is situated in. Implications for practice and/or policy It is important for schools to provide hands‐on model building experiences for students to understand and evaluate automated decisions from AI technologies. Students should be empowered to draw on their cultural and social backgrounds as they create models and evaluate data sources. To extend this work, educators should consider opportunities to integrate AI learning in other disciplinary subjects (ie, outside of computer science classes).
Exploring Artificial Intelligence (AI) in English Language Arts (ELA) with StoryQ is a 10-hour curriculum module designed for high school ELA classes. The module introduces students to fundamental AI concepts and essential machine learning workflow using StoryQ, a web-based GUI environment for Grades 6-12 learners. In this module, students work with unstructured text data and learn to train, test, and improve text classification models such as intent recognition, clickbait filter, and sentiment analysis. As they interact with machine-learning language models deeply, students also gain a nuanced understanding of language and how to wield it, not just as a data structure, but as a tool in our human-human encounters as well. The current version contains eight lessons, all delivered through a full-featured online learning and teaching platform. Computers and Internet access are required to implement the module. The module was piloted in an ELA class in the Spring of 2022, and the student learning outcomes were positive. The module is currently undergoing revision and will be further tested and improved in Fall 2022.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.