The adoption of network function visualization (NFV) and software-defined radio (SDN) has created a tremendous increase in Internet traffic due to flexibility brought in the network layer. An increase in traffic flowing through the network poses a security threat that becomes tricky to detect and hence selects an appropriate mitigation strategy. Under such a scenario occurrence of the distributed denial of service (DDoS) and flash events (FEs) affect the target servers and interrupt services. Isolating the attacks is the first step before selecting an appropriate mitigation technique. However, detecting and isolating the DDoS attacks from FEs when happening simultaneously is a challenge that has attracted the attention of many researchers. This study proposes a deep learning framework to detect the FEs and DDoS attacks occurring simultaneously in the network and isolates one from the other. This step is crucial in designing appropriate mechanisms to enhance network resilience against such cyber threats. The experiments indicate that the proposed model possesses a high accuracy level in detecting and isolating DDoS attacks and FEs in networked systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.