Gold(III) compounds are emerging as a new class of metal complexes with outstanding cytotoxic properties and are presently being evaluated as potential antitumor agents. We report here on the solution and electrochemical properties, and the biological behavior of some gold(III) dithiocarbamate derivatives which have been recently proved to be one to 4 orders of magnitude more cytotoxic in vitro than the reference drug (cisplatin) and to be able to overcome to a large extent both intrinsic and acquired resistance to cisplatin itself. Their solution properties have been monitored in order to study their stability under physiological conditions; remarkably, they have shown to undergo complete hydrolysis within 1 h, the metal center remaining in the +3 oxidation state. Their DNA binding properties and ability in hemolyzing red blood cells have been also evaluated. These gold(III) complexes show high reactivity toward some biologically important isolated macromolecules, resulting in a dramatic inhibition of both DNA and RNA synthesis and inducing DNA lesions with a faster kinetics than cisplatin. Nevertheless, they also induce a strong and fast hemolytic effect (compared to cisplatin), suggesting that intracellular DNA might not represent their primary or exclusive biological target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.