We present a novel multi-robot simulator named ARGoS. ARGoS is designed to simulate complex experiments involving large swarms of robots of different types. ARGoS is the first multi-robot simulator that is at the same time both efficient (fast performance with many robots) and flexible (highly customizable for specific experiments). Novel design choices in ARGoS have enabled this breakthrough. First, in ARGoS, it is possible to partition the simulated space into multiple sub-spaces, managed by different physics engines
A Novel Concept for the Study of Heterogeneous Robotic Swarms warm robotics systems are characterized by decentralized control, limited communication between robots, use of local information, and emergence of global behavior. Such systems have shown their potential for flexibility and robustness [1]-[3]. However, existing swarm robotics systems are by and large still limited to displaying simple proof-of-concept behaviors under laboratory conditions. It is our contention that one of the factors holding back swarm robotics research is the almost universal insistence on homogeneous system components. We believe that swarm robotics designers must embrace heterogeneity if they ever want swarm robotics systems to approach the complexity required of real-world systems. To date, swarm robotics systems have almost exclusively comprised physically and behaviorally undifferentiated agents. This design decision has its roots in ethological models of self-organizing natural systems. These models serve as inspiration for swarm robotics system designers, but are often highly abstract simplifications of natural systems and, to date, have largely assumed homogeneous agents. Selected dynamics of the systems under study are shown to emerge from the interactions of identical system components, ignoring the heterogeneities (physical, spatial, functional, and informational) that one can find in almost any natural system. The field of swarm robotics currently lacks methods and tools with which to study and leverage the heterogeneity that is present in natural systems. To remedy this deficiency, we propose swarmanoid, an innovative swarm robotics system composed of three different robot types with complementary skills: foot-bots are small autonomous robots specialized in moving on both even and uneven terrains, capable of self-assembling and of transporting objects or other robots; hand-bots are autonomous robots capable of climbing some vertical surfaces and manipulating small objects; and eye-bots are autonomous flying robots that can attach to an indoor ceiling, capable of analyzing the environment from a privileged position to S
We present two empirical studies on the design of control software for robot swarms. In Study A, Vanilla and EvoStick, two previously published automatic design methods, are compared with human designers. The comparison is performed on five swarm robotics tasks that are different from those on which Vanilla and EvoStick have been previously tested. The results show that, under the experimental conditions considered, Vanilla performs better than EvoStick, but it is not able to outperform human designers. The results indicate that Vanilla's weak element is the optimization algorithm employed The main contributors to this research are G. Francesca and M. Birattari. AutoMoDe and Vanilla were conceived and developed by G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari.123 Swarm Intell to search the space of candidate designs. To improve over Vanilla and with the final goal of obtaining an automatic design method that performs better than human designers, we introduce Chocolate, which differs from Vanilla only in the fact that it adopts a more powerful optimization algorithm. In Study B, we perform an assessment of Chocolate. The results show that, under the experimental conditions considered, Chocolate outperforms both Vanilla and the human designers. Chocolate is the first automatic design method for robot swarms that, at least under specific experimental conditions, is shown to outperform a human designer.
In flocking, a swarm of robots moves cohesively in a common direction. Traditionally, flocking is realized using two main control rules: proximal control, which controls the cohesion of the swarm using local range-and-bearing information about neighboring robots; and alignment control, which allows the robots to align in a common direction and uses more elaborate sensing mechanisms to obtain the orientation of neighboring robots. So far, limited attention has been given to motion control, used to translate the output of these two control rules into robot motion.In this paper, we propose a novel motion control method: magnitude-dependent motion control (MDMC). Through simulations and real robot experiments, we show that, with MDMC, flocking in a random direction is possible without the need of alignment control and of robots having a preferred direction of travel. MDMC has the advantage to be implementable on very simple robots that lack the capability to detect the orientation of their neighbors. Additionally, we introduce a small proportion of robots informed about a desired direction of travel. We compare MDMC with a motion control method used in previous robotics literature, which we call magnitudeindependent motion control (MIMC), and we show that the swarms can travel longer distances in the desired direction when using MDMC instead of MIMC. Finally, we systematically study flocking under various conditions: with or without alignment control, with or without informed robots, with MDMC or with MIMC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.