In this paper, we propose the design of an optical system based on two parallel suspended silicon nanowires that support a range of optical resonances that efficiently confine and scatter light in the infrared range as the base of an all-optical displacement sensor. The effects of the variation of the distance between the nanowires are analyzed. The simulation models are designed by COMSOL Multiphysics software, which is based on the finite element method. The diameter of the nanocylinders (d = 140 nm) was previously optimized to achieve resonances at the operating wavelengths (λ = 1064 nm and 1310 nm). The results pointed out that a detectable change in their resonant behavior and optical interaction was achieved. The proposed design aims to use a simple light source using a commercial diode laser and simplify the readout systems with a high sensitivity of 1.1 × 106 V/m2 and 1.14 × 106 V/m2 at 1064 nm and 1310 nm, respectively. The results may provide an opportunity to investigate alternative designs of displacement sensors from an all-optical approach and explore their potential use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.