Understanding how people trust autonomous systems is crucial to achieving better performance and safety in human-autonomy teaming. Trust in automation is a rich and complex process that has given rise to numerous measures and approaches aimed at comprehending and examining it. Although researchers have been developing models for understanding the dynamics of trust in automation for several decades, these models are primarily conceptual and often involve components that are difficult to measure. Mathematical models have emerged as powerful tools for gaining insightful knowledge about the dynamic processes of trust in automation. This paper provides an overview of various mathematical modeling approaches, their limitations, feasibility, and generalizability for trust dynamics in human-automation interaction contexts. Furthermore, this study proposes a novel and dynamic approach to model trust in automation, emphasizing the importance of incorporating different timescales into measurable components. Due to the complex nature of trust in automation, it is also suggested to combine machine learning and dynamic modeling approaches, as well as incorporating physiological data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.