Hyperketonemia (HYK) is one of the most frequent and costly metabolic disorders in high-producing dairy cows and its diagnosis is based on β-hydroxybutyrate (BHB) concentration in blood. In the last 10 years, the number of papers that have dealt with the impact of elevated BHB levels in dairy cattle has increased. Therefore, this paper reviewed the recent literature on BHB concentration in blood and milk, and its relationships with dairy cow health and performance, and farm profitability. Most studies applied the threshold of 1.2 mmol/l of BHB concentration in blood to indicate HYK; several authors considered BHB concentrations between 1.2 and 2.9 mmol/l as subclinical ketosis, and values ⩾3.0 mmol/l as clinical ketosis. Results on HYK frequency (prevalence and incidence) and cow performance varied according to parity and days in milk, being greater in multiparous than in primiparous cows, and in the first 2 weeks of lactation than in later stages. Hyperketonemia has been associated with greater milk fat content, fat-to-protein ratio and energy-corrected milk, and lower protein and urea nitrogen in milk. The relationships with milk yield and somatic cell count are still controversial. In general, HYK impairs health of dairy cows by increasing the risk of the onset of other early lactation diseases, and it negatively affects reproductive performance. The economic cost of HYK is mainly due to impaired reproductive performance and milk loss. From a genetic point of view, results from the literature suggested the feasibility of selecting cows with low susceptibility to HYK. The present review highlights that milk is the most promising matrix to identify HYK, because it is easy to sample and allows a complete screening of the herd through BHB concentration predicted using mid-IR spectroscopy during routine milk recording. Further research is needed to validate accurate and convenient methods to discriminate between cows in risk of HYK and healthy animals in field conditions and to support farmers to achieve an early detection and minimise the economic losses.
Flexitarians have reduced their meat consumption showing a rising interest in plant-based meat alternatives with ‘meaty’ characteristics, and we are witnessing an unprecedented growth of meat substitutes in the Western market. However, to our knowledge, no information regarding the ‘simulated beef burgers’ nutritional profile compared to similar meat products has been published yet. Here we show that, whilst both plant-based and meat-based burgers have similar protein profile and saturated fat content, the former are richer in minerals and polyunsaturated fatty acids. We found that the most abundant minerals in both categories were Na, K, P, S, Ca, and Mg; being Na and S content similar between groups. Only six amino acids differed between categories, being hydroxyproline exclusively in meat-based burgers. Plant-based burgers revealed fourfold greater content of n-6 than meat-based burgers, and greater short-chain fatty acids proportion. Our results demonstrate how ‘simulated beef’ products may be authenticated based on some specific nutrients and are a good source of minerals. We believe that there is a need to provide complete and unbiased nutritional information on these ‘new’ vegan products so that consumers can adjust their diet to nutritional needs.
Cheese provides essential nutrients for human nutrition and health, such as minerals and fatty acids (FA). Its composition varies according to milk origin (e.g., species and breed), rearing conditions (e.g., feeding and management), and cheese-making technology (e.g., coagulation process, addition of salt, ripening period). In recent years, cheese production has increased worldwide. Italy is one of the main producers and exporters of cheese. This study aimed to describe mineral, FA, and cholesterol content of 133 samples from 18 commercial cheeses from 4 dairy species (buffalo, cow, goat, and sheep) and from 3 classes of moisture content (hard, <35% moisture; semi-hard, 35-45%; and soft, >45%). Mineral concentrations of cheese samples were determined by inductively coupled plasma optical emission spectrometry, and FA and cholesterol contents were determined by gas chromatography. Moisture and species had a significant effect on almost all traits: the highest levels of Na, Ca, and Fe were found in cheeses made from sheep milk; the greatest level of Cu was found in cow milk cheese, the lowest amount of K was found in buffalo milk cheese, and the lowest amount of Zn was found in goat cheeses. In all samples, Cr and Pb were not detected (below the level of detection). In general, total fat, protein, and minerals significantly increased when the moisture decreased. Buffalo and goat cheeses had the highest saturated FA content, and sheep cheeses showed the highest content of unsaturated and polyunsaturated FA, conjugated linoleic acid, and n-3 FA. Goat and sheep cheeses achieved higher proportions of minor FA than did cow and buffalo cheeses. Buffalo cheese exhibited the lowest cholesterol level. Our results confirm that cheese mineral content is mainly affected by the cheese-making process, whereas FA profile mainly reflects the FA composition of the source milk. This study allowed the characterization of mineral and FA composition and cholesterol content and revealed large variability among different commercial cheeses.
Dairy products are important sources of nutrients for human health and in recent years their consumption has increased worldwide. Therefore, the food industry is interested in applying analytical technologies that are more rapid and cost-effective than traditional laboratory analyses. Infrared spectroscopy accomplishes both criteria, making real-time determination feasible. However, it is crucial to ensure that prediction models are accurate before their implementation in the dairy industry. In the last 5 yr, several papers have investigated the feasibility of mid-and near-infrared spectroscopy to determine chemical composition and authenticity of dairy products. Most studies have dealt with cheese, and few with yogurt, butter, and milk powder. Also, the use of near-infrared (in reflectance or transmittance mode) has been more prevalent than mid-infrared spectroscopy. This review summarizes recent studies on infrared spectroscopy in dairy products focusing on difficult to determine chemical components such as fatty acids, minerals, and volatile compounds, as well as sensory attributes and ripening time. Promising equations have been developed despite the low concentration or the absence of specific absorption bands (or both) for these compounds.
In developed countries, dogs and cats frequently suffer from obesity. Recently, gut microbiota composition in humans has been related to obesity and metabolic diseases. This study aimed to evaluate changes in body composition, and gut microbiota composition in obese Beagle dogs after a 17-wk BW loss program. A total of six neutered adult Beagle dogs with an average initial BW of 16.34 ± 1.52 kg and BCS of 7.8 ± 0.1 points (9-point scale) were restrictedly fed with a hypocaloric, low-fat and high-fiber dry-type diet. Body composition was assessed with dual-energy X-ray absorptiometry scan, before (T0) and after (T1) BW loss program. Individual stool samples were collected at T0 and T1 for the 16S rRNA analyses of gut microbiota. Taxonomic analysis was done with amplicon-based metagenomic results, and functional analysis of the metabolic potential of the microbial community was done with shotgun metagenomic results. All dogs reached their ideal BW at T1, with an average weekly proportion of BW loss of -1.07 ± 0.03% of starting BW. Body fat (T0, 7.02 ± 0.76 kg) was reduced by half (P < 0.001), while bone (T0, 0.56 ± 0.06 kg) and muscle mass (T0, 8.89 ± 0.80 kg) remained stable (P > 0.05). The most abundant identified phylum was Firmicutes (T0, 74.27 ± 0.08%; T1, 69.38 ± 0.07%), followed by Bacteroidetes (T0, 12.68 ± 0.08%; T1, 16.68 ± 0.05%), Fusobacteria (T0, 7.45 ± 0.02%; T1, 10.18 ± 0.03%), Actinobacteria (T0, 4.53 ± 0.02%; T1, 3.34 ± 0.01%), and Proteobacteria (T0, 1.06 ± 0.01%; T1, 1.40 ± 0.00%). At genus level, the presence of Clostridium, Lactobacillus, and Dorea, at T1 decreased (P = 0.028), while Allobaculum increased (P = 0.046). Although the microbiota communities at T0 and T1 showed a low separation level when compared (Anosim's R value = 0.39), they were significantly biodiverse (P = 0.01). Those differences on microbiota composition could be explained by 13 genus (α = 0.05, linear discriminant analysis (LDA) score > 2.0). Additionally, differences between both communities could also be explained by the expression of 18 enzymes and 27 pathways (α = 0.05, LDA score > 2.0). In conclusion, restricted feeding of a low-fat and high-fiber dry-type diet successfully modifies gut microbiota in obese dogs, increasing biodiversity with a different representation of microbial genus and metabolic pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.