Microbes are embedded in complex communities where they engage in a wide array of intra- and inter-specific interactions. The extent to which these interactions drive or impede microbiome diversity is not well understood. Historically, two contrasting hypotheses have been suggested to explain how species interactions could influence diversity. 'Ecological Controls' (EC) predicts a negative relationship, where the evolution or migration of novel types is constrained as niches become filled. In contrast, 'Diversity Begets Diversity' (DBD) predicts a positive relationship, with existing diversity promoting the accumulation of further diversity via niche construction and other interactions. Using high-throughput amplicon sequencing data from the Earth Microbiome Project, we provide evidence that DBD is strongest in low-diversity biomes, but weaker in more diverse biomes, consistent with biotic interactions initially favoring the accumulation of diversity (as predicted by DBD). However, as niches become increasingly filled, diversity hits a plateau (as predicted by EC).
The human papillomavirus (HPV) vaccines hold great promise for preventing several cancers caused by HPV infections. Yet little attention has been given to whether HPV could respond evolutionarily to the new selection pressures imposed on it by the novel immunity response created by the vaccine. Here, we present and theoretically validate a mechanism by which the vaccine alters the transmission-recovery trade-off that constrains HPV's virulence such that higher oncogene expression is favoured. With a high oncogene expression strategy, the virus is able to increase its viral load and infected cell population before clearance by the vaccine, thus improving its chances of transmission. This new rapid cell-proliferation strategy is able to circulate between hosts with medium to high turnover rates of sexual partners. We also discuss the importance of better quantifying the duration of challenge infections and the degree to which a vaccinated host can shed virus. The generality of the models presented here suggests a wider applicability of this mechanism, and thus highlights the need to investigate viral oncogenicity from an evolutionary perspective.
The controversy over whether vaccine-targeted HPV types will be replaced by other oncogenic, non-vaccine-targeted types remains unresolved. This is in part because little is known about the ecology of HPV types. Patient data has been interpreted to suggest independence or facilitative interactions between types and therefore replacement is believed to be unlikely. With a novel mathematical model, we investigated which HPV type interactions and their immune responses gave qualitatively similar patterns frequently observed in patients. To assess the possibility of type replacement, vaccination was added to see if non-vaccine-targeted types increased their 'niche'. Our model predicts that independence and facilitation are not necessary for the coexistence of types inside hosts, especially given the patchy nature of HPV infection. In fact, independence and facilitation inadequately represented co-infected patients. We found that some form of competition is likely in natural co-infections. Hence, non-vaccine-targeted types that are not cross-reactive with the vaccine could spread to more patches and can increase their viral load in vaccinated hosts. The degree to which this happens will depend on replication and patch colonization rates. Our results suggest that independence between types could be a fallacy, and so without conclusively untangling HPV within-host ecology, type replacement remains theoretically viable. More ecological thinking is needed in future studies.
Most infections by human papillomaviruses (HPVs) are ‘acute’, that is non-persistent. Yet, for HPVs, as for many other oncoviruses, there is a striking gap between our detailed understanding of chronic infections and our limited data on the early stages of infection. Here we argue that studying HPV acute infections is necessary and timely. Focusing on early interactions will help explain why certain infections are cleared while others become chronic or latent. From a molecular perspective, descriptions of immune effectors and pro-inflammatory pathways during the initial stages of infections have the potential to lead to novel treatments or to improved handling algorithms. From a dynamical perspective, adopting concepts from spatial ecology, such as meta-populations or meta-communities, can help explain why HPV acute infections sometimes last for years. Furthermore, cervical cancer screening and vaccines impose novel iatrogenic pressures on HPVs, implying that anticipating any viral evolutionary response remains essential. Finally, hints at the associations between HPV acute infections and fertility deserve further investigation given their high, worldwide prevalence. Overall, understanding asymptomatic and benign infections may be instrumental in reducing HPV virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.