Minimal (i.e. submicroscopic) residual disease (MRD) predicts outcome in childhood acute lymphoblastic leukaemia (ALL). To be used clinically, MRD assays must be reliable and accurate. Two well-established techniques, flow cytometry (FC) and polymerase chain reaction (PCR), can detect leukaemic cells with a sensitivity of 0.01% (10(-4)). We analysed diagnostic samples of 45 ALL-patients (37 B-lineage ALL, eight T-lineage ALL) by four-colour FC and real-time PCR. Leukaemia-associated immunophenotypes, at a sensitivity of MRD detection by FC at the 0.01% level, were identified in 41 cases (91%); antigen-receptor gene rearrangements suitable for MRD detection with a sensitivity of 0.01% or better by PCR were identified in 38 cases (84%). The combined use of FC and PCR allowed MRD monitoring in all 45 patients. In 105 follow-up samples, MRD estimates by both methods were highly concordant, with a deviation factor of <5 by Bland-Altman analysis. Importantly, the concordance between FC and PCR was also observed in regenerating bone marrow samples containing high proportions of CD19(+) cells, and in samples studied 24 h after collection. We conclude that both MRD assays yield generally concordant results. Their combined use should enable MRD monitoring in virtually all patients and prevent false-negative results due to clonal evolution or phenotypic shifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.