These results indicate that a diffuse pattern of NAWM damage in MS contributes to social cognition impairment in the ToM domain, probably due to a mechanism of disconnection within the social brain network. Gray matter pathology is also expected to have an important role; thus further research is required to clarify the neural basis of social cognition impairment in MS.
The retina is a highly metabolically active tissue with high-level consumption of nutrients and oxygen. This high metabolic demand requires a properly developed and maintained vascular system. The retina is nourished by two systems: the central retinal artery that supplies the inner retina and the choriocapillaris that supplies the outer retina and retinal pigment epithelium (RPE). Pathological neovascularization, characterized by endothelial cell proliferation and new vessel formation, is a common hallmark in several retinal degenerative diseases, including age-related macular degeneration (AMD). A limited number of studies have suggested that microglia, the resident immune cells of the retina, have an important role not only in the pathology but also in the formation and physiology of the retinal vascular system. Here, we review the current knowledge on microglial interaction with the retinal vascular system under physiological and pathological conditions. To do so, we first highlight the role of microglial cells in the formation and maintenance of the retinal vasculature system. Thereafter, we discuss the molecular signaling mechanisms through which microglial cells contribute to the alterations in retinal and choroidal vasculatures and to the neovascularization in AMD.
BackgroundFatigue is a frequent disabling symptom in multiple sclerosis (MS), but its pathophysiology remains incompletely understood. This study aimed to explore the underlying neural basis of fatigue in patients with MS. MethodsWe enrolled 60 consecutive patients with MS and 60 healthy controls (HC) matched on age, sex, and education. Fatigue was assessed using the Portuguese version of the Modified Fatigue Impact Scale (MFIS). All participants underwent 3T brain MRI (conventional and diffusion tensor imaging [DTI] sequences). White matter (WM) focal lesions were identified and T1/T2 lesion volumes were computed. Tract-based spatial statistics were applied for voxel-wise analysis of DTI metrics fractional anisotropy and mean diffusivity (MD) on normal-appearing WM (NAWM). Using Freesurfer software, total and regional volumes of cortical and subcortical gray matter (GM) were calculated. ResultsCompared to HC, patients with MS scored significantly higher on MFIS (33.8 ± 19.7 vs 16.5 ± 15.1, p < 0.001). MFIS scores were not significantly correlated with T1/T2 lesion volumes, total GM volume, or any regional volume of cortical and subcortical GM. Significant correlations were found between global scores of MFIS and MD increase of the NAWM skeleton, including corona radiata, internal capsule, external capsule, corticospinal tract, cingulum, corpus callosum, fornix, superior longitudinal fasciculus, superior frontooccipital fasciculus, sagittal stratum, posterior thalamic radiation, cerebral peduncle, and uncinate fasciculus. ConclusionsIn this study, fatigue was associated with widespread NAWM damage but not with lesion load or GM atrophy. Functional disconnection, caused by diffuse microstructural WM damage, might be the main neural basis of fatigue in MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.