In the past decades, the physicochemical properties of electron donor−acceptor, EDA, complexes (also called charge-transfer, CT, complexes) have been extensively studied, although their synthetic applications have been somewhat limited. However, in recent years, this scenario has started to change as an increasing number of examples have been reported. In this regard, this review aims to present and discuss the main aspects associated with the physicochemical properties of these complexes and a selection of synthetic photochemical applications in organic chemistry.
The upgrading of biomass‐derived compounds has arisen in recent years as a very promising research field in both academia and industry. In this sense, a lot of new processes and products have been developed, often involving levulinic acid as a starting material or intermediate. In the last few years, though, other scaffolds have been receiving growing attention, especially, angelica lactones. Considering these facts and the emergent applications of said molecules, in this review we will discuss their preparation and applications; the use of these frameworks as starting materials in organic synthesis to produce potential bioactive compounds will be covered, as will their use as a foundation to highly regarded compounds such as liquid alkanes with prospective use as fuels and polymers.
para‐Quinone methides (p‐QMs) are naturally occurring molecules that have been finding increasing synthetic applications in the last few years. The presence of two electronically different exocyclic conjugate substituents in their structure, carbonyl and methylidene, leads to a pronounced reactivity owing to the polarization of the molecule. In this sense, those are prone to undergo the attack of nucleophiles in the terminal carbon exocyclic double bond, behaving as vinylogous electrophiles and generating 1,6‐addition products. In this context, in the last few years the development of catalytic approaches for 1,6‐nucleophilic addition reactions involving p‐QMs has attracted considerable attention. Considering the extensive applications that such molecules have found in the last decades in 1,6‐addition reactions, in this review we comprehensively discuss the historical development of this field, starting with early approaches on natural product synthesis, going through seminal non‐stereoselective processes and progressing to cutting‐edge asymmetric‐catalyzed approaches.
A new magnetically recoverable nanocatalyst was prepared by coating magnetite with niobium oxide (Fe3O4@Nb2O5) by using a simple wet impregnation method. The Fe3O4@Nb2O5 nanocatalyst was fully characterized, and its catalytic activity was evaluated by using the one‐pot, three‐component Biginelli reaction, with the aim to synthesize 1,4‐dihydropyrimidinones, a class of compounds with diverse pharmacological properties. The developed protocol was applied to a wide range of aliphatic and aromatic substrates, and structurally diverse products were obtained in excellent yields. Compared with copper and nickel nanocatalysts, the Fe3O4@Nb2O5 nanocatalyst demonstrated superior catalytic activity at a remarkably low catalyst loading (0.1 mol %). This niobium nanocatalyst could be easily separated from the reaction mixture with an external magnet and was reused several times without any loss of its catalytic activity. Moreover, although the Biginelli reaction is a century‐old reaction, its mechanism is still a controversial subject, and our investigation provided an insight into the reaction mechanism.
Metal-free 1,3-dipolar cycloaddition reactions have proven to be a powerful tool for the assembly of key heterocycles, in particular diversely functionalized 1,2,3-triazoles. A number of metal-free (3+2)-cycloaddition approaches have been developed up to date with the aim to circumvent the use of metal catalysts allowing these reactions to take place in biological systems without perturbation of the naturally occurring processes. This feature article specifically provides an overview of emerging metal-free synthetic routes, and their mechanistic features, in the formation of functionalized 1,2,3-triazoles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.