Control of fatty acid storage and release in adipose tissue is fundamental in energy homeostasis and the development of obesity and type 2 diabetes. We here take the whole signalling network into account to identify how insulin and β-adrenergic stimulation in concert controls lipolysis in mature subcutaneous adipocytes obtained from non-diabetic and, in parallel, type 2 diabetic women. We report that, and show how, the anti-lipolytic effect of insulin can be fully explained by protein kinase B (PKB/Akt)-dependent activation of the phosphodiesterase PDE3B. Through the same PKB-dependent pathway β-adrenergic receptor signalling, via cAMP and PI3Kα, is anti-lipolytic and inhibits its own stimulation of lipolysis by 50%. Through this pathway both insulin and β-adrenergic signalling control phosphorylation of FOXO1. The dose–response of lipolysis is bell-shaped, such that insulin is anti-lipolytic at low concentrations, but at higher concentrations of insulin lipolysis was increasingly restored due to inhibition of PDE3B. The control of lipolysis was not altered in adipocytes from diabetic individuals. However, the release of fatty acids was increased by 50% in diabetes due to reduced reesterification of lipolytically liberated fatty acids. In conclusion, our results reveal mechanisms of control by insulin and β-adrenergic stimulation — in human adipocytes — that define a network of checks and balances ensuring robust control to secure uninterrupted supply of fatty acids without reaching concentrations that put cellular integrity at risk. Moreover, our results define how selective insulin resistance leave lipolytic control by insulin unaltered in diabetes, while the fatty acid release is substantially increased.
Lipolysis and the release of fatty acids to supply energy fuel to other organs, such as between meals, during exercise, and starvation, are fundamental functions of the adipose tissue. The intracellular lipolytic pathway in adipocytes is activated by adrenaline and noradrenaline, and inhibited by insulin. Circulating fatty acids are elevated in type 2 diabetic individuals. The mechanisms behind this elevation are not fully known, and to increase the knowledge a link between the systemic circulation and intracellular lipolysis is key. However, data on lipolysis and knowledge from in vitro systems have not been linked to corresponding in vivo data and knowledge in vivo. Here, we use mathematical modelling to provide such a link. We examine mechanisms of insulin action by combining in vivo and in vitro data into an integrated mathematical model that can explain all data. Furthermore, the model can describe independent data not used for training the model. We show the usefulness of the model by simulating new and more challenging experimental setups in silico, e.g. the extracellular concentration of fatty acids during an insulin clamp, and the difference in such simulations between individuals with and without type 2 diabetes. Our work provides a new platform for model-based analysis of adipose tissue lipolysis, under both non-diabetic and type 2 diabetic conditions.
The insulin receptor substrate-1 (IRS1) is phosphorylated on serine 307 (human sequence, corresponding to murine serine 302) in response to insulin as part of a feedback loop that controls IRS1 phosphorylation on tyrosine residues by the insulin receptor. This in turn directly affects downstream signaling and is in human adipocytes implicated in the pathogenesis of insulin resistance and type 2 diabetes. The phosphorylation is inhibited by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR) in complex with raptor (mTORC1). The mTORC1-downstream p70 ribosomal protein S6 kinase (S6K1), which is activated by insulin, can phosphorylate IRS1 at serine 307 in vitro and is considered the physiological protein kinase. Because the IRS1 serine 307-kinase catalyzes a critical step in the control of insulin signaling and constitutes a potential target for treatment of insulin resistance, it is important to know whether S6K1 is the physiological serine 307-kinase or not. We report that, by several criteria, S6K1 does not phosphorylate IRS1 at serine 307 in response to insulin in intact human primary adipocytes: (i) The time-courses for phosphorylation of S6K1 and its phosphorylation of S6 are not compatible with the phosphorylation of IRS1 at serine 307; (ii) A dominant-negative construct of S6K1 inhibits the phosphorylation of S6, without effect on the phosphorylation of IRS1 at serine 307; (iii) The specific inhibitor of S6K1 PF-4708671 inhibits the phosphorylation of S6, without effect on phosphorylation of IRS1 at serine 307. mTOR-immunoprecipitates from insulin-stimulated adipocytes contains an unidentified protein kinase specific for phosphorylation of IRS1 at serine 307, but it is not mTOR or S6K1.
Lipolysis and the release of fatty acids to supply energy to other organs, such as between meals, during exercise, and starvation, are fundamental functions of the adipose tissue. The intracellular lipolytic pathway in adipocytes is activated by adrenaline and noradrenaline, and inhibited by insulin. Circulating fatty acids are elevated in type 2 diabetic individuals. The mechanisms behind this elevation are not fully known, and to increase the knowledge a link between the systemic circulation and intracellular lipolysis is key. However, data on lipolysis and knowledge from in vitro systems have not been linked to corresponding in vivo data and knowledge in vivo. Here, we use mathematical modelling to provide such a link. We examine mechanisms of insulin action by combining in vivo and in vitro data into an integrated mathematical model that can explain all data. Furthermore, the model can describe independent data not used for training the model. We show the usefulness of the model by simulating new and more challenging experimental setups in silico, e.g. the extracellular concentration of fatty acids during an insulin clamp, and the difference in such simulations between individuals with and without type 2 diabetes. Our work provides a new platform for model-based analysis of adipose tissue lipolysis, under both non-diabetic and type 2 diabetic conditions.
The ubiquitously expressed IQ motif-containing GTPase activating protein-1 (IQGAP1) is a scaffolding protein implicated in an array of cellular functions, in particular by binding to cytoskeletal elements and signaling proteins. A role of IQGAP1 in adipocytes has not been reported. We therefore investigated the cellular IQGAP1 interactome in primary human adipocytes. Immunoprecipitation and quantitative mass spectrometry identified caveolae and caveolae-associated proteins as the major IQGAP1 interactors alongside cytoskeletal proteins. We confirmed co-localization of IQGAP1 with the defining caveolar marker protein caveolin-1 by confocal microscopy and proximity ligation assay. Most interestingly, insulin enhanced the number of IQGAP1 interactions with caveolin-1 by five-fold. Moreover, we found a significantly reduced abundance of IQGAP1 in adipocytes from patients with type 2 diabetes compared with cells from nondiabetic control subjects. Both the abundance of IQGAP1 protein and mRNA were reduced, indicating a transcriptional defect in diabetes. Our findings suggest a novel role of IQGAP1 in insulin-regulated interaction between caveolae and cytoskeletal elements of the adipocyte, and that this is quelled in the diabetic state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.