Twenty-two lycorine-related compounds were investigated for in vitro anti-tumor activity using four cancer cell lines displaying different levels of resistance to pro-apoptotic stimuli and two cancer cell lines sensitive to pro-apoptotic stimuli. Lycorine and six of its congeners exhibited potency in the single-digit micromolar range, while no compound appeared more active than lycorine. Lycorine also displayed the highest potential (in vitro) therapeutic ratio, being at least 15 times more active against cancer than normal cells. Our studies also showed that lycorine exerts its in vitro anti-tumor activity through cytostatic rather than cytotoxic effects. Furthermore, lycorine provided significant therapeutic benefit in mice bearing brain grafts of the B16F10 melanoma model at non-toxic doses. Thus, the results of the current study make lycorine an excellent lead for the generation of compounds able to combat cancers, which are naturally resistant to pro-apoptotic stimuli, such as glioblastoma, melanoma, non-small-cell-lung cancers, metastatic cancers, among others.
Cells and tissues can sense and react to the modifications of the physico-chemical properties of the extracellular environment (ECM) through integrin-based adhesion sites and adapt their physiological response in a process called mechanotransduction. Due to their critical localization at the cell-ECM interface, transmembrane integrins are mediators of bidirectional signaling, playing a key role in “outside-in” and “inside-out” signal transduction. After presenting the basic conceptual fundamentals related to cell mechanobiology, we review the current state-of-the-art technologies that facilitate the understanding of mechanotransduction signaling pathways. Finally, we highlight innovative technological developments that can help to advance our understanding of the mechanisms underlying nuclear mechanotransduction.
Glioblastoma (GBM) is the most frequent malignant glioma. Treatment of GBM patients is multimodal with maximum surgical resection, followed by concurrent radiation and chemotherapy with the alkylating drug temozolomide (TMZ). The present study aims to identify genes implicated in the acquired resistance of two human GBM cells of astrocytic origin, T98G and U373, to TMZ. Resistance to TMZ was induced by culturing these cells in vitro for months with incremental TMZ concentrations up to 1 mM. Only partial resistance to TMZ has been achieved and was demonstrated in vivo in immunocompromised mice bearing orthotopic U373 and T98G xenografts. Our data show that long-term treatment of human astroglioma cells with TMZ induces increased expression of facilitative glucose transporter/solute carrier GLUT/SLC2A family members, mainly GLUT-3, and of the AKR1C family of proteins. The latter proteins are phase 1 drug-metabolizing enzymes involved in the maintenance of steroid homeostasis, prostaglandin metabolism, and metabolic activation of polycyclic aromatic hydrocarbons. GLUT-3 has been previously suggested to exert roles in GBM neovascularization processes, and TMZ was found to exert antiangiogenic effects in experimental gliomas. AKR1C1 was previously shown to be associated with oncogenic potential, with proproliferative effects similar to AKR1C3 in the latter case. Both AKR1C1 and AKR1C2 proteins are involved in cancer pro-proliferative cell chemoresistance. Selective targeting of GLUT-3 in GBM and/or AKR1C proteins (by means of jasmonates, for example) could thus delay the acquisition of resistance to TMZ of astroglioma cells in the context of prolonged treatment with this drug.
To overcome the intrinsic resistance of cancer cells to apoptotic stimuli, we designed and synthesized approximately 50 novel β-carbolines structurally related to harmine. Harmine is known for its anticancer properties and is a DYRK1A inhibitor. Of the synthesized compounds, the most active in terms of growth inhibition of five cancer cell lines are cytostatic and approximately 100 times more potent than harmine but demonstrated no DYRK1A inhibitory activity. These novel β-carbolines display similar growth inhibitory activity in cancer cells that are sensitive and resistant to apoptotic stimuli. Using ChemGPS-NP, we found that the more active β-carbolines are all more lipophilic and larger than the less active compounds. Lastly, on the basis of the NCI human tumor cell line anticancer drug screen and the NCI COMPARE algorithm, it appears that some of these compounds, including 5a and 5k, seem to act as protein synthesis inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.