Leptin is a protein hormone which plays a critical role in the regulation of both body-weight through reducing food intake and stimulating energy expenditure. Several polymorphisms in leptin gene (LEP), which encodes for leptin, have been described. However, its association with obesity is still controversial. Therefore, in the present study, we aimed to investigate whether LEP c.-2548 G>A polymorphism was associated with serum leptin levels, lipid parameters, and body mass index in Turkish obese patients. Forty-seven obese patients and 48 healthy individuals were included in the study. Blood samples were collected for DNA extraction. LEP c.-2548 G>A polymorphism were detected using polymerase chain reaction-restriction fragment length polymorphism technique. Serum leptin levels and lipid parameters were measured by ELISA and enzyme colorimetric assay techniques, respectively. GA or AA genotypes and A allele carrier frequencies of the c.-2548 G>A polymorphism in the LEP were higher in obese (38.3, 34.0 and 72.3 %) when compared with controls (14.6, 12.5, and 27.1 %; p = 0.011, 0.016, and 0.002, respectively). On the other hand, AA or AG genotypes were also related to increased serum leptin levels (p < 0.001) and body mass index (p < 0.0001). All these consequences showed that LEP -2548 AA or AG genotypes are important predictors for increased levels of leptin and BMI in Turkish obese patients and it may be a useful marker for obesity risk in our population.
Among the antimicrobial mechanisms associated with macrophages, NO produced by iNOS plays a major role in intracellular killing, but the relationship between NO and phagocytic activity after injection of inflammatory agents into the peritoneal cavity is not clear. The aim of the present study was to investigate the effect of nitric oxide (NO) on macrophage function after treatment with intraperitoneal lipopolysaccharide (LPS) and the role of exogenous L-arginine administration in this event. Six experimental groups and one control group, each consisting of seven Wistar rats were used: Group I: Control; Group II: LPS; Group III: LPS+L-arginine; Group IV: LPS+L-arginine+Aminoguanidine; Group V: LPS+Aminoguanidine; Group VI: L-arginine; Group VII: Aminoguanidine. Macrophage phagocytic activity and total plasma nitrite levels were increased in the LPS group. In the LPS+L-arginine group, both the phagocytic activity and total plasma nitrite levels showed large increases. Administration of aminoguanidine (AG), a specific iNOS inhibitor, abolished macrophage phagocytic activity and total plasma nitrite levels in the LPS and LPS+L-arginine groups. As a result, we showed that NO produced by macrophages has a role not only in intracellular killing, but also in phagocytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.