In this work, we consider the case of a strongly coupled dark/hidden sector, which extends the Standard Model (SM) by adding an additional non-Abelian gauge group. These extensions generally contain matter fields, much like the SM quarks, and gauge fields similar to the SM gluons. We focus on the exploration of such sectors where the dark particles are produced at the LHC through a portal and undergo rapid hadronization within the dark sector before decaying back, at least in part and potentially with sizeable lifetimes, to SM particles, giving a range of possibly spectacular signatures such as emerging or semi-visible jets. Other, non-QCD-like scenarios leading to soft unclustered energy patterns or glueballs are also discussed. After a review of the theory, existing benchmarks and constraints, this work addresses how to build consistent benchmarks from the underlying physical parameters and present new developments for the pythia Hidden Valley module, along with jet substructure studies. Finally, a series of improved search strategies is presented in order to pave the way for a better exploration of the dark showers at the LHC.
This Letter proposes a new search for confining dark sectors at the Large Hadron Collider. As a result of the strong dynamics in the hidden sector, dark matter could manifest in proton-proton collisions at the Large Hadron Collider in form of hadronic jets containing stable invisible bound states. These semi-visible jets have been studied theoretically and experimentally in the fully hadronic signature where the unstable composite dark matter can only decay promptly back to Standard Model quarks. We present a simplified model based on two messenger fields separated by a large mass gap allowing dark bound states to decay into pairs of oppositely charged leptons. The resulting experimental signature is characterized by non-isolated lepton pairs inside semi-visible jets. We propose a search strategy independent from the underlying model assumptions targeting this new signature, and discuss the orthogonality with respect to the existing searches. Remaining agnostic on the shape of the di-lepton spectrum, we determine the sensitivity of a dedicated analysis to the target signal. The proposed search can claim the $$3 \sigma $$ 3 σ evidence (exclusion) of the heavier mediator up to masses of 3.5 TeV (4.5 TeV) with the full Run 2 data of the LHC. Exploiting the resonant feature of the lepton pairs can enhance the sensitivity reach on a specific model. We estimate that an analysis using the di-lepton invariant mass information can reach $$5 \sigma $$ 5 σ discovery up to masses of 3.5 TeV and improve the exclusion up to more than 5 TeV.
We report the results of a search for a new vector boson ($$ A'$$ A ′ ) decaying into two dark matter particles $$\chi _1 \chi _2$$ χ 1 χ 2 of different mass. The heavier $$\chi _2$$ χ 2 particle subsequently decays to $$\chi _1$$ χ 1 and an off-shell Dark Photon $$ A'^* \rightarrow e^+e^-$$ A ′ ∗ → e + e - . For a sufficiently large mass splitting, this model can explain in terms of new physics the recently confirmed discrepancy observed in the muon anomalous magnetic moment at Fermilab. Remarkably, it also predicts the observed yield of thermal dark matter relic abundance. A detailed Monte-Carlo simulation was used to determine the signal yield and detection efficiency for this channel in the NA64 setup. The results were obtained re-analyzing the previous NA64 searches for an invisible decay $$A'\rightarrow \chi \overline{\chi }$$ A ′ → χ χ ¯ and axion-like or pseudo-scalar particles $$a \rightarrow \gamma \gamma $$ a → γ γ . With this method, we exclude a significant portion of the parameter space justifying the muon g-2 anomaly and being compatible with the observed dark matter relic density for $$A'$$ A ′ masses from 2$$m_e$$ m e up to 390 MeV and mixing parameter $$\varepsilon $$ ε between $$3\times 10^{-5}$$ 3 × 10 - 5 and $$2\times 10^{-2}$$ 2 × 10 - 2 .
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.