Staphylococcus aureus (SA) is the most common causative agent for implant-associated osteitis. The present study characterizes a novel model of a low grade acute SA osteitis with bone defect in the femur which is stabilized by a titanium locking plate. Wild-type Balb/c mice were osteotomized, fixed by a locking plate and infected with SA. Mice underwent debridement 7 and 14 days later and were sacrificed at Day 28. At Days 7, 14, and 28 after inoculation local and systemic cell populations and IL-6 were analyzed. Fracture healing was quantified by radiography. The control group underwent the same procedure without infection. The bacterial load of implant-associated osteitis with biofilm formation was quantified by counting CFU and real-time PCR. Fracture healing determined by radiography was delayed in infected compared to non-infected mice. Throughout the investigation period CFU and leukocyte counts, as well as IL-6 levels were found to be significantly elevated in infected mice at the infection site but not systemically. Our murine model allows the detailed investigation of implant associated localized osteitis with biofilm producing SA and its influence on fracture healing. The model provides a tool to analyze therapeutic or prophylactic approaches to the problem of biofilmassociated osteitis. ß
The increasing incidence of implant-associated infections induced by Staphylococcus aureus (SA) in combination with growing resistance to conventional antibiotics requires novel therapeutic strategies. In the current study we present the first application of the biofilm-penetrating antimicrobial peptide lysostaphin in the context of bone infections. In a standardized implant-associated bone infection model in mice beta-irradiated lysostaphin-coated titanium plates were compared with uncoated plates. Coating of the implant was established with a poly(D,L)-lactide matrix (PDLLA) comprising lysostaphin formulated in a stabilizing and protecting solution (SPS). All mice were osteotomized and infected with a defined count of SA. Fractures were fixed with lysostaphin-coated locking plates. Plates uncoated or PDLLA-coated served as controls. All mice underwent debridement and lavage on Days 7, 14, 28 to determine the bacterial load and local immune reaction. Fracture healing was quantified by conventional radiography. On Day 7 bacterial growth in the lavages of mice with lysostaphin-coated plates showed a significantly lower count to the control groups. Moreover, in the lysostaphin-coated plate groups complete fracture healing were observed on Day 28. The fracture consolidation was accompanied by a diminished local immune reaction. However, control groups developed an osteitis with lysis or destruction of the bone and an evident local immune response. The presented approach of terminally sterilized lysostaphin-coated implants appears to be a promising therapeutic approach for low grade infection or as prophylactic strategy in high risk fracture care e.g. after severe open fractures.
Cerament (Bonesupport Holding, Lund, Sweden) is a bioresorbable synthetic bone substitute consisting of calcium sulfate and hydroxyapatite which is successfully used as a bone graft in bone defects or in delayed and non-unions after fractures. Besides, calcium sulfate/ hydroxyapatite (CAS/HA) could have, attributed to its composition and osteoinductive properties, have great importance in the treatment of bone infections with critical size defects (CSD). Aim of the study was to evaluate the effects of antibiotic infused CAS/HA on inflammation and bone healing in an implant-associated osteitis mice model. In a standardized murine model, the left femur of 72 BALB/c mice were osteotomized, generating a CSD (2,5 mm) with stabilization through a 6-hole titanium locking plate. Osteitis has been induced through inoculation of Staphylococcus aureus (SA) into the fracture gap. To analyze the effect of CAS/HA, following groups were generated with either CAS/HA, CAS/HA with gentamycin (CAS/ HA-G) or CAS/HA with vancomycin (CAS/HA-V) insets placed into the osteotomy. Debridément and lavages were progressed on day 7 and 42 to determine the local bacterial growth and the immune reaction. Fracture healing was quantified on day 7 and 42 by x-ray and bone healing markers from blood samples. Progression of infection was assessed by estimation of colony-forming units (CFU) and immune response was analyzed by determination of Interleukin (IL)– 6 and polymorphonuclear neutrophils (PMN) in lavage samples. Osteitis induced higher IL-6 and PMN-levels in the lavage samples on day 7. Both parameters showed a reduction in all groups on day 42. CAS/HA-V revealed a significant reduction of CFU and PMNs in lavage samples on day 42. A positive effect on bone healing could only be shown in non-infected mice. Whereas, application of mere CAS/HA in infected mice did show tendencies of bone destruction and lysis, independent of impregnation with antibiotics or not. Thus, application of CAS/HA in acute implant-associated infections is not recommended. In non-infectious environments or after infect-convalescence CAS/HA could albeit serve as a suggestive tool in trauma and orthopedic surgery.
Hyperbaric oxygen therapy (HBO) is applied very successfully in treatment of various diseases such as chronic wounds. It has been already suggested as adjunctive treatment option for osteitis by immune- and fracture modulating effects. This study evaluates the importance of HBO in an early implant-associated localized osteitis caused by Staphylococcus aureus (SA) compared to the standard therapy. In a standardized murine model the left femur of 120 BALB/c mice were osteotomized and fixed by a titanium locking plate. Osteitis has been induced with a defined amount of SA into the fracture gap. Debridément and lavages were progressed on day 7, 14, 28 and 56 to determine the local bacterial growth and the immune reaction. Hyperbaric oxygen (2 ATA, 90%) was applied for 90 minutes on day 7 to 21 for those mice allocated to HBO therapy. To evaluate the effect of HBO therapy the following groups were analyzed: Two sham-groups (12 mice / group) with and without HBO therapy, two osteotomy groups (24 mice / group) with plate osteosynthesis of the femur with and without HBO therapy, and two osteotomy SA infection groups (24 mice / group) with and without HBO therapy. Fracture healing was also quantified on day 7, 14, 28 and 56 by a.p. x-ray and bone healing markers from blood samples. Progression of infection was assessed by estimation of colony-forming units (CFU) and immune response was analyzed by determination of polymorphonuclear neutrophils (PMN), Interleukin (IL) - 6, and the circulating free DNA (cfDNA) in lavage samples. Osteitis induced significantly higher IL-6, cfDNA- and PMN-levels in the lavage samples (on day 7 and 14, each p < 0.05). HBO-therapy did not have a significant influence on the CFU and immune response compared to the standard therapy (each p > 0.05). At the same time HBO-therapy was associated with a delayed bone healing assessed by x-ray radiography and a higher rate of non-union until day 28. In conclusion, osteitis led to significantly higher bacterial count and infection parameters. HBO-therapy neither had a beneficial influence on local infection nor on immune response or fracture healing compared to the standard therapy in an osteitis mouse model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.