Aspartic acid stabilized iron oxide nanoparticles (A-IONPs) with globular shape and narrow size distribution were prepared by the co-precipitation method in aqueous medium. A quantum-mechanical approach to aspartic acid optimized structure displayed negative charged sites, relatively high dipole moment, and hydrophilicity, which recommended it for interaction with iron cations and surrounding water electrical dipoles. A-IONPs were characterized by TEM, XRD, ATR-FTIR, EDS, DSC, TG, DLS, NTA, and VSM techniques. Theoretical study carried out by applying Hartree-Fock and density functional algorithms suggested that some aspartic acid properties related to the interaction can develop with nanoparticles and water molecules. The results of experimental investigation showed that the mean value of particle physical diameters was 9.17 ± 2.2 nm according to TEM image analysis, the crystallite size was about 8.9 nm according to XRD data, while the magnetic diameter was about 8.8 nm, as was determined from VSM data interpretation with Langevin’s theory. The A-IONP suspension was characterized by zeta-potential of about −11.7 mV, while the NTA investigation revealed a hydrodynamic diameter of 153.9 nm. These results recommend the A-IONP suspension for biomedical applications.
In order to obtain new substances with potential biological activity dipeptide derivatives from p-aminobenzoyl-phenylglycine and p-aminobenzoyl-phenylalanine were grafted on 1,2,4-triazolic heterocycle. The new synthesized compounds belong to the group of antimetabolites, group used in medicine for treating malignant tumors. Also, it is possible to study the correlation between chemical structure and biological activity of the new compounds.
We present some preliminary results regarding possible reducing of environment phenol contamination with nanotechnology involving. Magnetic nanoparticles stabilized in water dispersion with oleate were prepared for experimental testing of their interaction with wastewater samples containing phenol residues from industrial and sanitation sources. Magnetite with moderate level of cobalt doping was synthesized by co-precipitation method in the form of nanoparticles; further their surface was modified by the reaction with sodium oleate solution. Quantum chemical simulation of oleate structure recommended it for the interaction with water dipolar molecules as well as with metal cations at the nanocores surface. Transmission Electron Microscopy confirmed fine granulation of the prepared sample meaning significant total surface of nanoparticle sample. Phenol loaded water model was let to interact with magnetic nanoparticles in various reaction conditions. Phenol absorbance in the main spectral band showed the concentration diminution following magnetic nanoparticle action in the presence of ultraviolet radiation and hydrogen peroxide supply. Further experiments are planned for the better optimization of the phenol concentration decreasing in the large volumes of wastewater with adequate nanostructures, able to develop efficient interaction mechanisms with pollutant molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.