The surface topography of biomaterials can have an important impact on cellular adhesion, growth and proliferation. Apart from the overall roughness, the detailed morphological features, at all length scales, significantly affect the cell-biomaterial interactions in a plethora of applications including structural implants, tissue engineering scaffolds and biosensors. In this study, we present a simple, one-step direct laser patterning technique to fabricate nanoripples and dual-rough hierarchical micro/nano structures to control SW10 cell attachment and migration. It is shown that, depending on the laser processing conditions, distinct cell-philic or cell-repellant patterned areas can be attained with a desired motif. We envisage that our technique could enable spatial patterning of cells in a controllable manner, giving rise to advanced capabilities in cell biology research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.