Abyssal seafloor communities cover more than 60% of Earth’s surface. Despite their great size, abyssal plains extend across modest environmental gradients compared to other marine ecosystems. However, little is known about the patterns and processes regulating biodiversity or potentially delimiting biogeographical boundaries at regional scales in the abyss. Improved macroecological understanding of remote abyssal environments is urgent as threats of widespread anthropogenic disturbance grow in the deep ocean. Here, we use a new, basin-scale dataset to show the existence of clear regional zonation in abyssal communities across the 5,000 km span of the Clarion–Clipperton Zone (northeast Pacific), an area targeted for deep-sea mining. We found two pronounced biogeographic provinces, deep and shallow-abyssal, separated by a transition zone between 4,300 and 4,800 m depth. Surprisingly, species richness was maintained across this boundary by phylum-level taxonomic replacements. These regional transitions are probably related to calcium carbonate saturation boundaries as taxa dependent on calcium carbonate structures, such as shelled molluscs, appear restricted to the shallower province. Our results suggest geochemical and climatic forcing on distributions of abyssal populations over large spatial scales and provide a potential paradigm for deep-sea macroecology, opening a new basis for regional-scale biodiversity research and conservation strategies in Earth’s largest biome.
Three species of Spinoncaea Böttger-Schnack, 2003 are newly recorded in three locations of the equatorial and temperate Pacific Ocean collected by using a net of 60 μm mesh size. For all three species, morphological characters and patterns of ornamentation were analyzed in detail and illustrations of both sexes, also including form variants of the females, are provided. For the first time, information about the variability of various continuous (morphometric) characters are given, such as the spine lengths on the rami of the swimming legs or the proportions of urosomites. The complementary morphological descriptions of the Pacific specimens focus on similarities or modifications of characters as compared to earlier descriptions of these species from the type locality and various other localities. For S. ivlevi (Shmeleva, 1966), originally but insufficiently described from the Adriatic Sea, the Pacific material is similar in most aspects to the comprehensive redescription of the species from the Red Sea and from the type locality, except for a difference in the morphometry of the distal endopod segment on the antenna, which is discussed here. For S. tenuis Böttger-Schnack, 2003, and S. humesi Böttger-Schnack, 2003, the Pacific material mostly coincides with the characteristic features as described in the original account from the Red Sea. For all three species, differences and/or additions in ornamentation details were found in Pacific specimens (e.g., on the intercoxal sclerite of the first swimming leg or on the genital somite of the male) and females with aberrant morphology were detected. Genetic analyses based on 12S srRNA revealed for two species, S. ivlevi and S. humesi, little or no differences in genetic sequences between Pacific specimens and those recorded from the Mediterranean Sea, thus demonstrating that specimens from both locations are conspecific. For S. tenuis, for which no comparable genetic data are available, 12S srRNA amplification was unsuccessful as was the amplification of mitochondrial COI (barcoding) for all three species. The applicability of using COI amplification for barcoding of oncaeid copepods is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.