With an increasing interest in ultra-high frequency (UHF) partial discharge (PD) measurements for the continuous monitoring of power transformers, it is necessary to know where to place the UHF sensors on the tank wall. Placing a sensor in an area with many obstructions may lead to a decrease in sensitivity to the UHF signals. In this contribution, a previously validated simulation model of a three-phase 300 MVA, 420 kV power transformer is used to perform a sensitivity analysis to determine the most sensitive sensor positions on the tank wall when PD activity occurs inside the windings. A matrix of UHF sensors located on the transformer tank is used to perform the sensitivity analysis. Some of the windings are designed as layer windings, thus preventing the UHF signals from traveling through them and creating a realistic situation with very indirect propagation from source to sensor. Based on these findings, sensor configurations optimized for UHF signal sensitivity, which is also required for PD source localization, are recommended for localization purposes. Additionally, the propagation and attenuation of the UHF signals inside the windings and the tank are discussed in both oil and air.
Ultra-high frequency (UHF) partial discharge (PD) measurements in power transformers are becoming popular because of the advantages of the method. Therefore, it is necessary to improve the basic understanding of the propagation of signals inside the transformer tank and the factors that influence the sensitivity of the measurement. Since the winding represents a major obstacle to the propagation of the UHF signals, it is necessary to study the effect of winding design on signal propagation. Previous research activities have studied these effects using simplified models, and it is essential to consider the complexity of propagation in a complete transformer tank. Additionally, the quality of UHF PD measurements depends, to a large extent, on the sensitivity of the UHF sensors. In this contribution, a simulation model consisting of a simple, grounded enclosure with multiple winding designs is used to study the propagation characteristics of UHF signals when an artificial PD source is placed inside the winding. After analysis of the results, the winding designs are incorporated in an existing and validated simulation model of a 420 kV power transformer and analyzed to observe the influence in a more complex structure. Two commonly used sensor designs are also used in the simulation model to receive the signals. In all cases, the propagation and signal characteristics are analyzed and compared to determine the influence of the winding and sensor design on the UHF signals. It is found that the level of detail of winding design has a significant impact on the propagation characteristics. However, the attenuation characteristics of the UHF signals received by the two sensor designs are similar, with the electric field distribution around the sensor being the key difference.
Ultra-high-frequency (UHF) partial discharge (PD) monitoring is gaining popularity because of its advantages over electrical methods for onsite/online applications. One such advantage is the possibility of three-dimensional PD source localization. However, it is necessary to understand the signal propagation and attenuation characteristics in transformers to improve localization. Since transformers are available in a wide range of ratings and geometric sizes, it is necessary to ascertain the similarities and differences in UHF signal characteristics across the different designs. Therefore, in this contribution, the signal attenuation and propagation characteristics of two 300 MVA transformers are analyzed and compared based on experiments. The two transformers have the same rating but different internal structures. It should be noted that the oil is drained out of the transformers for these tests. Additionally, a simulation model of one of the transformers is built and validated based on the experimental results. Subsequently, a simulation model is used to analyze the electromagnetic wave propagation inside the tank. Analysis of the experimental data shows that the distance-dependent signal attenuation characteristics are similar in the case of both transformers and can be well represented by hyperbolic equations, thus indicating that transformers with the same rating have similar attenuation characteristics even if they have different internal structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.