In this work, transparent heterojunction between zinc oxide (ZnO) and poly(N-vinyl carbazole) (PVK) was fabricated by solution processing techniques such as spin-coating and dip-coating techniques; then, its performance was studied using current (I)-voltage (V) measurement at room temperature. Before fabricating the heterojunction, initially, the growth characteristics of both thin films were independently optimized on a well-cleaned glass substrate, then its structural properties, optical properties, and surface topography were characterized using an Xray diffractometer, UV-VIS-NIR spectrophotometer, and atomic force microscope, respectively. The structural analysis confirms the existence of a PVK thin film in amorphous nature and ZnO thin film in hexagonal crystal structure. The transparent nature of the heterojunction was found to be more than 85% in the visible and NIR regions with the absorption onset in the ultraviolet region. The observed experimental results explored the possibilities of fabricating ZnO/PVK transparent heterojunction by solution-based routes on a transparent fluorine-doped tin oxide substrate for transparent electronics applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.