A self-consistent simulation, including a model for improved core energy confinement, demonstrates that externally applied, inductive current perturbations can be used to control both the location and strength of internal transport barriers (ITBs) in a fully non-inductive tokamak discharge. We find that ITB structures formed with broad non-inductive current sources such as LHCD are more readily controlled than those formed by localized sources such as ECCD. Through this external control of the magnetic shear profile, we can maintain the ITB strength which is otherwise prone to deteriorate when the bootstrap current increases. The inductive current perturbation, which can be implemented by a weak Ohmic power, offers steady-state, advanced tokamak reactors an external means of efficient ITB control for regulating the fusion-burn net output and spatial profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.