Myeloproliferative neoplasms (MPNs) are classified as chronic myeloid leukemia (CML) and Philadelphia chromosome-negative MPN. In MPN cases, the presence of a <i>BCR-ABL1</i> translocation with a coexisting mutation is exceptionally rare. Herein, we report the first documented patient with CML harboring <i>CALR</i> mutation in Korea. A 33-year-old woman was referred to our hospital in February 2015 with splenomegaly, leukocytosis, and thrombocytosis. She was diagnosed with CML and started receiving nilotinib. In October 2015, a major molecular response was observed, but thrombocytosis persisted. A repeat bone marrow (BM) examination revealed no specific findings. However, as thrombocytosis worsened, we changed nilotinib to dasatinib. In May 2019, owing to persistent thrombocytosis, we repeated the BM examination and found <i>CALR</i> mutation (15.97%) on the MPN–next generation sequencing (NGS) test. We then retrospectively performed repeat MPN-NGS testing using the BM aspirate sample obtained in 2015 and found <i>CALR</i> mutation (10.64%).
Acral melanoma commonly occurs in areas that are not exposed to much sunlight, such as the sole of the foot. Little is known about risk factors and mutational processes of plantar acral melanoma. Nuclear envelope rupture during interphase contributes to genome instability in cancer. Here, we show that the nuclear and micronuclear membranes of melanoma cells are frequently ruptured by macroscopic mechanical stress on the plantar surface due to weight-bearing activities. The marginal region of plantar melanoma nodules exhibits increased nuclear morphological abnormalities and collagen accumulations, and is more susceptible to mechanical stress than the tumor center. An increase in DNA damage coincides with nuclear membrane rupture in the tumor margin. Nuclear envelope integrity is compromised by the mechanosensitive transcriptional cofactor YAP activated in the tumor margin. Our results suggest a mutagenesis mechanism in melanoma and explain why plantar acral melanoma is frequent at higher mechanical stress points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.