Background and Purpose Diabetes mellitus (DM) is a common metabolic disease among the middle-aged and older population, which leads to an increase of stroke incidence and poor stroke recovery. The present study was designed to investigate the impact of DM on brain damage and on ischemic brain repair after stroke in aging animals. Methods DM was induced in middle aged rats (13 months) by administration of nicotinamide (NTM) and streptozotocin (STZ). Rats with confirmed hyperglycemia status 30d after NTM-STZ injection and age matched Non-DM rats were subjected to embolic middle cerebral artery occlusion (MCAO). Results Middle aged rats subjected to NTM-STZ injection became hyperglycemic and developed cognitive deficits 2 months after induction of DM. Histopathological analysis revealed that there was sporadic vascular disruption including cerebral microvascular thrombosis, blood brain barrier (BBB) leakage, and loss of paravascular Aquaporin-4 in the hippocampi. Importantly, middle aged DM rats subjected to stroke had exacerbated sensorimotor and cognitive deficits compared to age-matched non-DM ischemic rats during stroke recovery. Compared to age-matched non-DM ischemic rats, DM ischemic rats exhibited aggravated neurovascular disruption in the bilateral hippocampi and white matter, suppressed stroke-induced neurogenesis and oligodendrogenesis, and impaired dendritic/spine plasticity. However, DM did not enlarge infarct volume. Conclusions Our data suggest that DM exacerbates neurovascular damage and hinders brain repair processes, which likely contribute to the impairment of stroke recovery.
Objectives To reveal the role of circular RNA (circRNA) DOCK1 (circDOCK1) as a potential biomarker and therapeutic target and its competing endogenous RNA mechanism in bladder carcinoma (BC). Methods The next‐generation sequencing (NGS) technology was introduced to screen the circRNA expression profiles of BC using microarray. qPCR and Western blots assay were employed to measure the gene expression in different groups. Cell counting kit‐8, EdU and transwell assays were applied to detect the cell viability, proliferation and migration potential, respectively. Luciferase reporter assay was used to test the binds between hsa‐miR‐132‐3p/Sox5. Xenografted tumour growth of nude mice was performed to test the role of circDOCK1 in vivo. Results CircDOCK1 was upregulated in BC tissues and cell lines. Repression of circDOCK1 reduced cell viability, inhibited cell proliferation and curbed the cell migration potential of BC cell. CircDOCK1 played its role via regulation of circDOCK1/hsa‐miR‐132‐3p/Sox5 pathway in BC cells. Suppression circDOCK1 inhibited the tumour growth in vivo. Conclusion In this study, we revealed that circDOCK1 affected the progression of BC via modulation of circDOCK1/hsa‐miR‐132‐3p/Sox5 pathway both in vitro and in vivo and providing a potential biomarker and therapeutic targets for BC.
The activation of nuclear factor-κB (NF-κB) has been implicated in the development and progression of endometriosis. The aim of this study is to investigate the potential application of pyrrolidine dithiocarbamate (PDTC), a potent NF-κB inhibitor, in the treatment of endometriosis. NF-κB-DNA-binding activity, IκB phosphorylation and expression of nuclear p65 protein in endometriotic ectopic stromal cells (EcSCs), endometriotic eutopic stromal cells (EuSCs) and normal endometrial stromal cells (NESCs) were detected by electrophoretic mobility shift assay and western blot analysis. Adhesion, migration, invasion and apoptosis of EcSCs were observed by means of adhesion, migration, invasion and terminal deoxynucleotidyl transferase-mediated dUDP nick-end labeling assay, respectively. Gene and protein expressions of CD44s, matrix metalloproteinase (MMP)-2, MMP-9 and survivin in EcSCs were measured by RT-PCR and western blot analysis. The results showed that PDTC in the absence or presence of interleukin (IL)-1β showed stronger inhibitory effects on NF-κB-DNA-binding activity, IκB phosphorylation and expression of nuclear p65 protein in EcSCs than those in EuSCs or NESCs. PDTC enhanced apoptosis, and suppressed IL-1β-induced cellular adhesion, migration and invasion of EcSCs. Pretreatment of EcSCs with PDTC attenuated IL-1β-induced expressions of CD44s, MMP-2, MMP-9 and survivin at gene and protein levels. All these findings suggest that PDTC induces apoptosis and down-regulates adhesion, migration and invasion of EcSCs through the suppression of various molecules. Therefore, PDTC could be used as a therapeutic agent for the treatment of endometriosis.
ObjectiveMicrobial infections have been shown to contribute to gastric carcinogenesis, the knowledge of gastric microbiota alteration in this process may provide help in early diagnosis of gastric cancer. The aim of this study was to characterize the microbial changes and identify taxonomic biomarkers across stages of gastric carcinogenesis.MethodsThe gastric microbiota was investigated by 16S rRNA gene analysis in gastric mucosal specimens from 47 patients including superficial gastritis (SG), atrophic gastritis (AG), gastric intraepithelial neoplasia (GIN), and gastric cancer (GC). Differences in microbial composition across the disease stages, especially in GIN and GC were assessed using linear discriminant analysis effect size.ResultsThere was no gradual changing trend in the richness or diversity of the gastric microbiota across stages of gastric carcinogenesis. The relative abundance of dominant taxa at phylum and genus levels didn’t show a gradual shift pattern, and the only four taxa that continuously enriched from SG to GC were Slackia, Selenomonas, Bergeyella, and Capnocytophaga, all of which were oral bacteria. The most representative taxa which were enriched in GC patients were oral bacteria including Parvimonas, Eikenella and Prevotella-2, and environmental bacteria including Kroppenstedtia, Lentibacillus, and Oceanobacillus. The gastric microbiota in GIN patients were characterized by enrichment of intestinal commensals including Romboutsia, Fusicatenibacter, Prevotellaceae-Ga6A1-group, and Intestinimonas. Gastric cardia cancer and non-cardia cancer patients had significantly different microbiota profiles characterized by a higher abundance of Helicobacter in the cardia cancer patients.ConclusionsOur results provide insights on potential taxonomic biomarkers for gastric cancer and precancerous stages, and suggest that gastric microbiota might play different roles in the carcinogenesis of cardia cancer and non-cardia cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.