Background The parasitic dinoflagellates of the genus Hematodinium represent the causative agent of so-called bitter or pink crab disease in a broad range of shellfish taxa. Outbreaks of Hematodinium-associated disease can devastate local fishing and aquaculture efforts. The goal of our study was to examine the potential role of the common shore (green) crab Carcinus maenas as a reservoir for Hematodinium. Carcinus maenas is native to all shores of the UK and Ireland and the North East Atlantic but has been introduced to, and subsequently invaded waters of, the USA, South Africa and Australia. This species is notable for its capacity to harbour a range of micro- and macro-parasites, and therefore may act as a vector for disease transfer. Methods Over a 12-month period, we interrogated 1191 crabs across two distinct locations (intertidal pier, semi-closed dock) in Swansea Bay (Wales, UK) for the presence and severity of Hematodinium in the haemolymph, gills, hepatopancreas and surrounding waters (eDNA) using PCR-based methods, haemolymph preparations and histopathology. Results Overall, 13.6% were Hematodinium-positive via PCR and confirmed via tissue examination. Only a small difference was observed between locations with 14.4% and 12.8% infected crabs in the Dock and Pier, respectively. Binomial logistic regression models revealed seasonality (P < 0.002) and sex (P < 0.001) to be significant factors in Hematodinium detection with peak infection recorded in spring (March to May). Male crabs overall were more likely to be infected. Phylogenetic analyses of the partial ITS and 18S rRNA gene regions of Hematodinium amplified from crabs determined the causative agent to be the host generalist Hematodinium sp., which blights several valuable crustaceans in the UK alone, including edible crabs (Cancer pagurus) and langoustines (Nephrops norvegicus). Conclusions Shore crabs were infected with the host generalist parasite Hematodinium sp. in each location tested, thereby enabling the parasite to persist in an environment shared with commercially important shellfish.
Sciatic motoneurones were retrogradely labelled with long-lasting fluorescent dyes prior to unilateral nerve crush in either 3-day-old or adult rats. The number of surviving labelled motoneurones at intervals after nerve injury were compared to the number in the contralateral control ventral horn and in unoperated animals. Following adult nerve crush there was no significant reduction in the number of labelled motoneurones, but after neonatal nerve crush the count was reduced to about 35%. Most of the cell death occurred during the first 6 days after nerve injury, mainly from the lower half of the motor column, but about one third died between 6 and 12 days, mainly from the upper part. These results suggest that less mature motoneurones tend to die earliest, before the muscle is reinnervated. Those in the upper, more mature part of the motor pool survive longer but may still die during reinnervation. At least two types of glial cell were secondarily labelled by this method, distinguished by their response to nerve injury.
The spiny lobster Panulirus argus is an important benthic mesopredator and a major fishing resource across the Wider Caribbean region. This species is host to the pathogenic virus PaV1 and metacercariae of Cymatocarpus solearis, a digenean trematode whose first intermediate host remains unknown. Previous studies found that the probability of infection with PaV1 was higher in juvenile lobsters and in densely vegetated habitats (suggesting that marine vegetation can be an environmental reservoir for PaV1), whereas the probability of infection with C. solearis was higher for larger lobsters and in poorly vegetated habitats. To increase insight into the role of habitat and body size in the ecology of lobster diseases, the presence of both C. solearis and PaV1 in P. argus was investigated across three contrasting zones in Bahía de la Ascensión, Mexico (19°35′27″N, 87°38′06″W): reef, lagoon and shallow habitat. Additionally, habitat complexity, cover of benthic components, and macroinvertebrate biodiversity were characterized in each zone. Consistent with previous studies, probability of infection with PaV1 (both at a clinical and infective level) decreased with increasing lobster size and was highest in the seagrass-rich lagoon, supporting the idea that marine vegetation could be an environmental reservoir for PaV1. In contrast, the probability of infection with C. solearis increased significantly with lobster size but did not vary with zone, suggesting no relationship with benthic substrate type. However, based on results of macroinvertebrate diversity, the gastropods Cerithium litteratum and Tegula fasciata are put forward as potential candidates for the first intermediate hosts of C. solearis.
Diseases of lobster shells have a significant impact on fishing industries but the risk of disease transmission between different lobster species has yet to be properly investigated. This study compared bacterial biofilm communities from American (Homarus americanus) and European lobsters (H. gammarus), to assess both healthy cuticle and diseased cuticle during lesion formation. Culture-independent molecular techniques revealed diversity in the bacterial communities of cuticle biofilms both within and between the two lobster species, and identified three bacterial genera associated with shell lesions plus two putative beneficial bacterial species (detected exclusively in healthy cuticle or healing damaged cuticle). In an experimental aquarium shared between American and European lobsters, heterospecific transmission of potentially pathogenic bacteria appeared to be very limited; however, the claws of European lobsters were more likely to develop lesions when reared in the presence of American lobsters. Aquarium biofilms were also examined but revealed no candidate pathogens for environmental transmission. Aquimarina sp. ‘homaria’ (a potential pathogen associated with a severe epizootic form of shell disease) was detected at a much higher prevalence among American than European lobsters, but its presence correlated more with exacerbation of existing lesions rather than with lesion initiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.