A full Co20Fe60B20\MgO\ Co20Fe60B20 perpendicular magnetic tunnel junction (pMTJ) with (Co\Pt) multilayers as pinning layers and different functional multilayers stacks were made and annealed at different temperatures. The tunneling magnetoresistance ratio (TMR) and MgO barrier resistance-area product (RA) were measured and analyzed as a function of annealing temperature. The TMR of pMTJs dramatically declines with increasing annealing temperatures from 320 °C to 400 °C while the RA increases with temperature from 375 °C to 450 °C. The pMTJs and partial stacks were also measured in a vibrating sample magnetometer (VSM). We found that the (Co\Pt) multilayers are very stable and maintain a magnetization direction perpendicular to the film plane up to 450 °C. However, the magnetization direction of the CoFeB above and below the MgO barrier rotates from perpendicular to in-plane with increasing annealing temperature. Furthermore, the CoFeB layer influences the adjacent (Co\Pt) layers to rotate at the same time. The pMTJs’ elemental depth profiles in the as deposited and annealed states were determined by Secondary Ion Mass Spectrometry (SIMS). We found that Boron and Tantalum migrate towards the top of the stack. The other elements (Platinum, Cobalt, Ruthenium, and Magnesium) are very stable and do not interdiffuse during annealing up to 450°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.