Phenylketonuria (PKU) is an inherited autosomal recessive disorder of phenylalanine metabolism, mainly caused by a deficiency of phenylalanine hydroxylase (PAH). The incidence of various PAH mutations differs among race and ethnicity. Here we report a spectrum of PAH mutations complied from 796 PKU patients from mainland China. The all 13 exons and adjacent intronic regions of the PAH gene were determined by next-generation sequencing. We identified 194 different mutations, of which 41 are not reported before. Several mutations reoccurred with high frequency including p.R243Q, p.EX6-96A > G, p.V399V, p.R241C, p.R111*, p.Y356*, p.R413P, and IVS4-1G > A. 76.33% of mutations were localized in exons 3, 6, 7, 11, 12. We further compared the frequency of each mutation between populations in northern and southern China, and found significant differences in 19 mutations. Furthermore, we identified 101 mutations that are not reported before in Chinese population, our study thus broadens the mutational spectrum of Chinese PKU patients. Additionally, 41 novel mutations will expand and improve PAH mutation database. Finally, our study offers proof that NGS is effective, reduces screening times and costs, and facilitates the provision of appropriate genetic counseling for PKU patients.
Hepatitis C virus (HCV) infection is the leading cause of chronic liver-related diseases, including cirrhosis, liver failure, and hepatocellular carcinoma. Currently, no effective vaccine is available for HCV infection. Polyethylene glycol interferon-α (PegIFN-α) in combination with ribavirin (RBV) is the standard of care (SOC) for chronic hepatitis C. However, the efficacy of PegIFN-α and RBV combination therapy is less than 50% for genotype 1 HCV, which is the dominant virus in humans. In addition, IFN and RBV have several severe side effects. Therefore, strategies to improve sustained virological response (SVR) rates have been an important focus for clinical physicians. The serine protease inhibitors telaprevir and boceprevir were approved by the United States Food and Drug Administration in 2011. The addition of HCV protease inhibitors to the SOC has significantly improved the efficacy of treatments for HCV infection. Several direct-acting antiviral drugs currently in late-stage clinical trials, both with and without peg-IFN and RBV, have several advantages over the previous SOC, including higher specificity and efficacy, fewer side effects, and the ability to be administered orally, and might be optimal regimens in the future. Factors affecting the efficacy of anti-HCV treatments based on IFN-α include the HCV genotype, baseline viral load, virological response during treatment, host IL28B gene polymorphisms and hepatic steatosis. However, determining the effect of the above factors on DAA therapy is necessary. In this review, we summarize the development of anti-HCV agents and assess the main factors affecting the efficacy of antiviral treatments.
Aralia elata is a perennial woody plant of the genus Aralia in the family Araliaceae. It is rich in saponins and therefore has a wide range of pharmacological effects. Here, we report a high-quality reference genome of A. elata, with a genome size of 1.21 Gb and a contig N50 of 51.34 Mb, produced by PacBio HiFi sequencing technology. This is the first genome assembly for the genus Aralia. Through genome evolutionary analysis, we explored the phylogeny and whole genome duplication (WGD) events in the A. elata genome. The results indicated that a recent WGD event occurred in the A. elata genome. Estimation of the divergence times indicated that the WGD may be shared by Araliaceae. By analyzing the genome sequence of A. elata and combining the transcriptome data from three tissues, we discovered important genes related to triterpene saponins biosynthesis. Furthermore, based on the embryonic callus induction system of A. elata established in our laboratory, we set up the genetic transformation system of this plant. The genomic resources and genetic transformation system obtained in this study provide insights into A. elata and lays the foundation for further exploration of the A. elata regulatory mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.