Abstract. HYSPEC is a high-intensity, direct-geometry time-of-flight spectrometer at the Spallation Neutron Source, optimized for measurement of excitations in small single-crystal specimens with optional polarization analysis capabilities. The incident neutron beam is monochromated using a Fermi chopper with short, straight blades, and is then vertically focused by Bragg scattering onto the sample position by either a highly oriented pyrolitic graphite (unpolarized) or a Heusler (polarized) crystal array. Neutrons are detected by a bank of 3 He tubes that can be positioned over a wide range of scattering angles about the sample axis. HYSPEC entered the user program in February 2013 for unpolarized experiments, and is already experiencing a vibrant research program. Polarization analysis will be accomplished by using the Heusler crystal array to polarize the incident beam, and either a 3 He spin filter or a supermirror wide-angle polarization analyser to analyse the scattered beam. The 3 He spin filter employs the spin-exchange optical pumping technique. A 60• wide angle 3 He cell that matches the detector coverage will be used for polarization analysis. The polarized gas in the post-sample wide angle cell is designed to be periodically and automatically refreshed with an adjustable pressure of polarized gas, optically pumped in a separate cell and then transferred to the wide angle cell. The supermirror analyser has 960 supermirror polarizers distributed over 60• , and has been characterized at the Swiss Spallation Neutron Source. The current status of the instrument and the development of its polarization analysis capabilities are presented.
We constructed a compact in situ polarized (3)He neutron spin filter based on spin-exchange optical pumping which is capable of continuous pumping of the (3)He gas while the system is in place in the neutron beam on an instrument. The compact size and light weight of the system simplifies its utilization on various neutron instruments. The system has been successfully tested as a neutron polarizer on the triple-axis spectrometer (HB3) and the hybrid spectrometer (HYSPEC) at Oak Ridge National Laboratory. Over 70% (3)He polarization was achieved and maintained during the test experiments. Over 90% neutron polarization and an average of 25% transmission for neutrons of 14.7 meV and 15 meV was also obtained.
We report on the in situ polarized (3)He neutron polarization analyzer developed for the time-of-flight Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Using the spin exchange optical pumping method, we achieved a (3)He polarization of 76% ± 1% and maintained it for the entire three-day duration of the test experiment. Based on transmission measurements with unpolarized neutrons, we show that the average analyzing efficiency of the (3)He system is 98% for the neutron wavelength band of 2-5 Å. Using a highly polarized incident neutron beam produced by a supermirror bender polarizer, we obtained a flipping ratio of >100 with a transmission of 25% for polarized neutrons, averaged over the wavelength band of 2-5 Å. After the cell was depolarized for transmission measurements, it was reproducibly polarized and this performance was maintained for three weeks. A high quality polarization analysis experiment was performed on a reference sample of Fe/Cr multilayer with strong spin-flip off-specular scattering. Using a combination of the position sensitive detector, time-of-flight method, and the excellent parameters of the (3)He cell, the polarization analysis of the two-dimensional maps of reflected, refracted, and off-specular scattered intensity above and below the horizon were obtained, simultaneously.
Despite the challenges, neutron resonance spin echo still holds the promise to improve upon neutron spin echo for the measurement of slow dynamics in materials. We present a bootstrap, radio frequency neutron spin flipper using high temperature superconducting technology capable of flipping neutron spin with either nonadiabatic or adiabatic modes. A frequency of 2 MHz has been achieved, which would achieve an effective field integral of 0.35 T m for a meter of separation in a neutron resonance spin echo spectrometer at the current device specifications. In bootstrap mode, the self-cancellation of Larmor phase aberrations can be achieved with the appropriate selection of the polarity of the gradient coils.
Two-dimensional van der Waals MnBi2n Te3n+1 (n = 1, 2, 3, 4) compounds have been recently found to be intrinsic magnetic topological insulators rendering quantum anomalous Hall effect and diverse topological states. Here, we summarize and compare the crystal and magnetic structures of this family, and discuss the effects of chemical composition on their magnetism. We found that a considerable fraction of Bi occupies at the Mn sites in MnBi2n Te3n+1 (n = 1, 2, 3, 4) while there is no detectable Mn at the non-magnetic atomic sites within the resolution of neutron diffraction experiments. The occupancy of Mn monotonically decreases with the increase of n. The polarized neutron diffraction on the representative MnBi4Te7 reveals that its magnetization density is exclusively accumulated at the Mn site, in good agreement with the results from the unpolarized neutron diffraction. The defects of Bi at the Mn site naturally explain the continuously reduced saturated magnetic moments from n = 1 to n = 4. The experimentally estimated critical exponents of all the compounds generally suggest a three-dimensional character of magnetism. Our work provides material-specified structural parameters that may be useful for band structure calculations to understand the observed topological surface states and for designing quantum magnetic materials through chemical doping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.