Beta-azidoalanine dipeptide 1 was synthesized, and its azido stretching vibration in H2O and dimethyl sulfoxide (DMSO) was studied by using Fourier transform (FT) IR spectroscopy. The dipole strength of the azido stretch mode is found to be about 19 and 5 times larger than those of the CN and SCN stretch modes, respectively, which have been used as local environmental IR sensors. The azido stretch band in H2O is blue-shifted by about 14 cm(-1) in comparison to that in DMSO, indicative of its sensitivity to the electrostatic environment. To test the utility of beta-azidoalanine as an IR probe of the local electrostatic environment in proteins, azidopeptide 4 was prepared by its incorporation into Abeta(16-22) peptide of the Alzheimer's disease amyloid beta-protein at position Ala21. The amide I IR spectrum of 4 in D2O suggests that the azidopeptide thus modified forms in-register beta-sheets in aggregates as observed for normal Abeta(16-22). The azido peak frequency of 4 in aggregates is almost identical to that in DMSO, indicating that the azido group is not exposed to water but to the hydrophobic environment. We believe that beta-azidoalanine will be used as an effective IR probe for providing site-specific information about the local electrostatic environments of proteins.
A few experimental and theoretical studies on the molecular structure of N-acetylproline amide (AP) in D2O solution have been reported recently. However, there is no consensus of the precise structure of AP in D2O because spectroscopically determined structures and a theoretically simulated one have been found to be different from one another. To determine its aqueous solution structure, IR and vibrational circular dichroism spectra of both L- and D-form AP solutions were measured. Molecular dynamics simulations with two different force fields and density functional theory calculations for the trans and cis rotamers of AP were performed to numerically simulate those spectra. Comparisons between experimentally measured and computationally simulated spectra directly suggest that the AP in water adopts a polyproline II-like conformation and that the force field parameter ff03 in the AMBER 8 suite of programs is more realistic and reliable in predicting molecular structure of AP in water than the ff99 in AMBER 7.
Vibrational chromophores that are sensitive to local electrostatic environment are useful probes of structural variations of proteins on subnanosecond time scales, but their short vibrational lifetimes often limit their applicability. Here we explore a possibility to increase the lifetime of nitrile probes by introducing heavy atoms between the probe and protein side chains. Stereoisomers of thiocyanato-and selenocyanato-derivatized prolines, Pro-SCN and Pro-SeCN, are synthesized, and their CN stretch lifetimes in D 2 O and chloroform are measured with polarization-controlled IR pump−probe spectroscopy. The measured lifetimes of 170−330 ps for Pro-SeCN are three to four times longer than those for Pro-SCN, indicating that selenium atom is more effective than sulfur atom in blocking the intramolecular vibrational relaxation pathways of the CN stretch mode. This is further confirmed by carrying out nonequilibrium molecular dynamics simulations of the vibrational relaxation processes. Given the crucial role of the proline residue in determining protein structures, we anticipate that the Pro-SeCN probe can be an excellent site-specific probe of changes in protein local environment.
To study the phosphorylation effect on the peptide conformation, we carried out nuclear magnetic resonance (NMR), circular dichroism (CD), Fourier transform (FT)-IR, and vibrational circular dichroism (VCD) experiments with serine and threonine dipeptides (SD and TD) and their phosphorylated ones (pSD and pTD). It is found that both unphosphorylated and phosphorylated serine and threonine dipeptides adopt two conformations, polyproline II (P(II)) and beta-strand. The pH-dependent NMR study shows that the side-chain dianionic phosphoryl group can form direct intramolecular hydrogen bonds with the backbone amide protons at both the acetyl and amide ends of pTD, but only at the acetyl end of pSD. Temperature- and pH-dependent CD studies reveal that, unlike pSD, pTD undergoes conformational transition from P(II) to beta-strand upon double ionization of the phosphoryl group. The subtle but distinct differences between pTD and pSD in site-selective intramolecular hydrogen-bonding interaction and charge-dependent conformational transition may sometimes become significant when choosing between serine and threonine for the conformational control of peptides and proteins by phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.