Hydration effects on the C[Triple Bond]N stretching mode frequencies of MeCN and MeSCN are investigated by carrying out ab initio calculations for a number of MeCN-water and MeSCN-water complexes with varying number of water molecules. It is found that the CN frequency shift induced by the hydrogen-bonding interactions with water molecules originate from two different ways to form hydrogen bonds with the nitrogen atom of the CN group. Considering the MeCN- and MeSCN-water cluster calculation results as databases, we first examined the validity of vibrational Stark effect relationship between the CN frequency and the electric field component parallel to the CN bond and found no strong correlation between the two. However, taking into account of additional electric field vector components is a simple way to generalize the vibrational Stark theory for the nitrile chromophore. Also, the electrostatic potential calculation method has been proposed and examined in detail. It turned out that the interactions of water molecules with nitrogen atom's lone pair orbital and with nitrile pi orbitals can be well described by the electrostatic potential calculation method. The present computational results will be of use to quantitatively simulate various linear and nonlinear vibrational spectra of nitrile compounds in solutions.
Amide I local mode frequencies and vibrational coupling constants in various multiple-stranded antiparallel β-sheet polyalanines are calculated by using the semiempirical calculation method and Hessian matrix reconstruction methods. The amide I local mode frequency is strongly dependent on the nature and number of hydrogen bonds. Vibrational couplings among amide I local modes in the multiple-stranded β-sheets are shown to be fully characterized by eight different coupling constants. The intrastrand coupling constants are found to be much smaller than the interstrand ones. Introducing newly defined inverse participation ratios and phase-correlation factors, the extent of two-dimensional delocalization and the vibrational phase relationship of amide I normal modes are elucidated. The A − E 1 frequency splitting magnitude is shown to be strongly dependent on the number of strands but not on the length of each strand. A reduced one-dimensional Frenkel exciton model is used to describe the observed A − E 1 frequency splitting phenomenon.
The antiparallel and parallel beta sheets are two of the most abundant secondary structures found in proteins. Although various spectroscopic methods have been used to distinguish these two different structures, the linear spectroscopic measurements could not provide incisive information for distinguishing an antiparallel beta sheet from a parallel beta sheet. After carrying out quantum-chemistry calculations and model simulations, we show that the polarization-controlled two-dimensional (2D) IR photon echo spectroscopy can be of critical use in distinguishing these two different beta sheets. Particularly, the ratio between the diagonal peak and the cross peak is found to be strongly dependent on the quasi-2D array of the amide I local-mode transition dipole vectors. The relative intensities of the cross peaks in the 2D difference spectrum of an antiparallel beta sheet are significantly larger than those of the diagonal peaks, whereas the cross-peak amplitudes in the 2D difference spectrum of a parallel beta sheet are much weaker than the main diagonal-peak amplitudes. A detailed discussion on the origin of the diagonal- and cross-peak intensity distributions of both the antiparallel and parallel beta sheets is presented by examining vibrational exciton delocalization, relative angles between two different normal-mode transition dipoles, and natures of the cross peaks in the 2D difference spectrum.
In Paper I, we studied vibrational properties of normal bases, base derivatives, Watson-Crick base pairs, and multiple layer base pair stacks in the frequency range of 1400-1800 cm(-1). However, typical IR absorption spectra of single- and double-stranded DNA have been measured in D(2)O solution. Consequently, the more relevant bases and base pairs are those with deuterium atoms in replacement with labile amino hydrogen atoms. Thus, we have carried out density functional theory vibrational analyses of properly deuterated bases, base pairs, and stacked base pair systems. In the frequency range of interest, both aromatic ring deformation modes and carbonyl stretching modes appear to be strongly IR active. Basis mode frequencies and vibrational coupling constants are newly determined and used to numerically simulate IR absorption spectra. It turns out that the hydration effects on vibrational spectra are important. The numerically simulated vibrational spectra are directly compared with experiments. Also, the (18)O-isotope exchange effect on the poly(dG):poly(dC) spectrum is quantitatively described. The present calculation results will be used to further simulate two-dimensional IR photon echo spectra of DNA oligomers in the companion Paper III.
Chain length and site dependencies of amide I local mode frequencies of R-helical polyalanines are theoretically studied by carrying out semiempirical quantum chemistry calculations. A theoretical model that can be used to quantitatively predict both the local amide I mode frequencies and coupling constants between two different local amide I modes is developed. Using this theoretical model and performing molecular dynamics simulation of an R-helical polyalanine in liquid water, we investigate conformational fluctuation and hydrogen-bonding dynamics by monitoring amide I frequency fluctuations. The instantaneous normal-mode analysis method is used to obtain densities of states of the one-and two-exciton bands and to quantitatively investigate the extent of delocalization of the instantaneous amide I normal modes. Also, by introducing a novel concept of the so-called weighted phase-correlation factor, the symmetric natures of the delocalized amide I normal modes are elucidated, and it is also shown that there is no unique way to classify any given amide I normal mode of the R-helical polyalanine in liquid water to be either A-mode-like or E 1 -mode-like. From the ensembleaveraged dipole strength spectrum and density of one-exciton states, the amide I infrared absorption spectrum is numerically calculated and its asymmetric line shape is theoretically described. Considering both transitions from the ground state to one-exciton states and those from one-exciton states to two-exciton states, we calculate the two-dimensional IR pump-probe spectra and directly compare them with recent experimental results. A brief discussion on the cross-peaks previously observed in the two-dimensional difference spectrum is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.