Parkinson’s disease (PD) is a neurodegenerative disease, which is associated with mitochondrial dysfunction and abnormal protein accumulation. No treatment can stop or slow PD. Autophagy inhibits neuronal death by removing damaged mitochondria and abnormal protein aggregations. Celastrol is a triterpene with antioxidant and anti-inflammatory effects. Up until now, no reports have shown that celastrol improves PD motor symptoms. In this study, we used PD cell and mouse models to evaluate the therapeutic efficacy and mechanism of celastrol. In the substantia nigra, we found lower levels of autophagic activity in patients with sporadic PD as compared to healthy controls. In neurons, celastrol enhances autophagy, autophagosome biogenesis (Beclin 1↑, Ambra1↑, Vps34↑, Atg7↑, Atg12↑, and LC3-II↑), and mitophagy (PINK1↑, DJ-1↑, and LRRK2↓), and these might be associated with MPAK signaling pathways. In the PD cell model, celastrol reduces MPP+-induced dopaminergic neuronal death, mitochondrial membrane depolarization, and ATP reduction. In the PD mouse model, celastrol suppresses motor symptoms and neurodegeneration in the substantia nigra and striatum and enhances mitophagy (PINK1↑ and DJ-1↑) in the striatum. Using MPP+ to induce mitochondrial damage in neurons, we found celastrol controls mitochondrial quality by sequestering impaired mitochondria into autophagosomes for degradation. This is the first report to show that celastrol exerts neuroprotection in PD by activating mitophagy to degrade impaired mitochondria and further inhibit dopaminergic neuronal apoptosis. Celastrol may help to prevent and treat PD.
The inflammatory process is proposed to be one of the factors to benign prostatic enlargement (BPH), and this is the first study examining the anti-inflammatory ability of phloretin in treating rats with testosterone-induced BPH. BPH would be induced by testosterone (10 mg/kg/day testosterone subcutaneously for 28 days), and the other groups of rats were treated with phloretin 50 mg/kg/day or 100 mg/kg/day orally (phr50 or phr100 group) after induction. Prostate weight and prostate weight to body weight ratio were significantly reduced in the Phr100 group. Reduced dihydrotestosterone without interfering with 5α-reductase was observed in the phr100 group. In inflammatory proteins, reduced IL-6, IL-8, IL-17, NF-κB, and COX-2 were seen in the phr100 group. In reactive oxygen species, malondialdehyde was reduced, and superoxide dismutase and glutathione peroxidase were elevated in the phr100 group. In apoptotic assessment, elevated cleaved caspase-3 was observed in rats of the phr100 group. Enhanced pro-apoptotic Bax and reduced anti-apoptotic Bc1-2 could be seen in the phr100 group. In histological stains, markedly decreased glandular hyperplasia and proliferative cell nuclear antigen were observed with reduced expression in the phr100 group. Meanwhile, positive cells of terminal deoxynucleotidyl transferase dUTP nick end labeling were increased in the phr100 group. In conclusion, the treatment of phloretin 100 mg/kg/day could ameliorate testosterone-induced BPH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.