We fabricated the defect passivation of perovskite solar cells using CdSe/ZnS quantum dots. The efficient defect passivation of reduces the trap charge density and elongates the charge carrier life time.
The M W 6.5 Chengkung earthquake occurred in eastern Taiwan at 04:38 UTC on 10 December 2003. The GPS data from eighteen continuously recording stations (CORS) and 86 campaign-surveyed stations (CSS) collected 18 days to 9 months before and 6 days to 4 months after the main shock are utilized to analyze the coseismic and postseismic deformation associated with the Chengkung earthquake. The earthquake resulted from rupturing of the Chihshang fault, a 25-km-long segment of the Longitudinal Valley Fault (LVF). The coseismic horizontal displacements in the hanging wall showed a fan-shape distribution with vectors towards the west. On the other hand, the movements of the revealed a mirror fan-shape with relatively lesser amounts of displacement. The largest coseismic displacement, which reached 126 mm and 263 mm in the horizontal and vertical components, occurred near the epicenter area in the hanging wall. The largest postseismic displacements in 109 days, which approached 59 mm and 68 mm in the horizontal and vertical components, occurred near the surface trace of the Chihshang fault (TAPO) and near the epicenter area (CHEN), respectively. The stations near the Chihshang fault indicated a more significant postseismic displacement than coseismic one.
Taiwan experiences high deformation rates, particularly along its eastern margin where a shortening rate of about 30 mm/yr is experienced in the Longitudinal Valley and the Coastal Range. Four Sacks-Evertson borehole strainmeters have been installed in this area since . Liu et al. (2009 proposed that a number of strain transient events, primarily coincident with low-barometric pressure during passages of typhoons, were due to deep-triggered slow slip. Here we extend that investigation with a quantitative analysis of the strain responses to precipitation as well as barometric pressure and the Earth tides in order to isolate tectonic source effects. Estimates of the strain responses to barometric pressure and groundwater level changes for the different stations vary over the ranges À1 to À3 nanostrain/millibar(hPa) and À0.3 to À1.0 nanostrain/hPa, respectively, consistent with theoretical values derived using Hooke's law. Liu et al. (2009) noted that during some typhoons, including at least one with very heavy rainfall, the observed strain changes were consistent with only barometric forcing. By considering a more extensive data set, we now find that the strain response to rainfall is about À5.1 nanostrain/hPa. A larger strain response to rainfall compared to that to air pressure and water level may be associated with an additional strain from fluid pressure changes that take place due to infiltration of precipitation. Using a state-space model, we remove the strain response to rainfall, in addition to those due to air pressure changes and the Earth tides, and investigate whether corrected strain changes are related to environmental disturbances or tectonic-original motions. The majority of strain changes attributed to slow earthquakes seem rather to be associated with environmental factors. However, some events show remaining strain changes after all corrections. These events include strain polarity changes during passages of typhoons (a characteristic that is not anticipated from our estimates of the precipitation transfer function) that are more readily explained in terms of tectonic-origin motions, but clearly the triggering argument is now weaker than that presented in Liu et al. (2009). Additional on-site water level sensors and rain gauges will provide data critical for a more complete understanding, including the currently unresolved issue of why, for some typhoons, there appears to be a much smaller transfer function for precipitation-induced strain changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.