The great success of the Tropical Rainfall Measuring Mission (TRMM) and its successor Global Precipitation Measurement (GPM) has accelerated the development of global high-resolution satellite-based precipitation products (SPP). However, the quantitative accuracy of SPPs has to be evaluated before using these datasets in water resource applications. This study evaluates the following GPM-era and TRMM-era SPPs based on two years (2014–2015) of reference daily precipitation data from rain gauge networks in ten mountainous regions: Integrated Multi-SatellitE Retrievals for GPM (IMERG, version 05B and version 06B), National Oceanic and Atmospheric Administration (NOAA)/Climate Prediction Center Morphing Method (CMORPH), Global Satellite Mapping of Precipitation (GSMaP), and Multi-Source Weighted-Ensemble Precipitation (MSWEP), which represents a global precipitation data-blending product. The evaluation is performed at daily and annual temporal scales, and at 0.1 deg grid resolution. It is shown that GSMaPV07 surpass the performance of IMERGV06B Final for almost all regions in terms of systematic and random error metrics. The new orographic rainfall classification in the GSMaPV07 algorithm is able to improve the detection of orographic rainfall, the rainfall amounts, and error metrics. Moreover, IMERGV05B showed significantly better performance, capturing the lighter and heavier precipitation values compared to IMERGV06B for almost all regions due to changes conducted to the morphing, where motion vectors are derived using total column water vapor for IMERGV06B.
This study proposes a real-time error correction method for the forecasted water stage using a combination of forecast errors estimated by the time series models, AR(1), AR(2), MA(1) and MA(2), and the average deviation model to update the water stage forecast during rainstorm events. During flood forecasting and warning operations, the proposed real-time error correction method takes advantage of being individually and continuously implemented and the results not being updated to the hydrological model and hydraulic routings so as to save computational time by recalibrating the parameters of the proposed methods with real-time observation. For model validation, the current study adopts the observed and forecasted data on a severe typhoon, Morakot, collected at eight water level gauges in Southern Taiwan and provided by the flood forecast system FEWS_Taiwan, which is linked with the reliable quantitative precipitation forecast (QPF) at 3 h of lead time provided by the Center Weather Bureau in Taiwan, as the model validation. The results of numerical experiments indicate that the proposed real-time error correction method can effectively reduce the errors of forecasted water stages at the 1-, 2-, and 3-h lead time and so enhance the reliability of forecast information issued by the FEWS_Taiwan. By means of real-time estimating potential forecast error, the uncertainties in hydrology, modules as well as associated parameters, and physiographical features of the river can be reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.