Simple Sequence Repeats (SSRs) are abundant in genome sequences and become popular biomarkers for genetic studies. Several SSRs were proved essential for gene regulation; abnormal repeat patterns of these critical SSRs might cause lethal diseases. The Next Generation Sequencing technologies provided efficient approaches for SSR polymorphism detection. However, inefficient and manually curated processes were unavoidable for identifying SSR markers in previous approaches. An automatic and efficient system for detecting polymorphic SSRs at genomic scales was proposed without manual curated and examining works. The workflow accepted multiple NGS sequencing datasets and started with assembly by de novo or reference mapping approaches. The consensus sequences were then obtained from previously assembled contigs, and calibrated coordinates in each individual contig were aligned according to the selected reference sequences. Next, the mining SSR mechanism was designed to retrieve all potential polymorphic SSRs whenever the circumstances were occurred due to insertion or deletion mechanisms.The 1000 genomes Trio projects were employed as the testing sequence datasets, and the CODIS SSR markers and 9 well known disease-related SSR motifs were verified as the testing targets. The results have shown the proposed method could identify the known polymorphic SSRs as well as novel SSR markers when there was no sequencing or mapping errors within the consensus sequences. The proposed method employed NGS technologies to identify SSR polymorphism and accelerate related researches, which facilitates novel SSR biomarker selection and regulatory elements discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.