Stroke is a serious neurological disease that may lead to long-term disabilities and even death for stroke patients worldwide. The acute period, (≤1 mo post-stroke), is crucial for rehabilitation but the current standard clinical practice may be ineffective for patients with severe motor impairment, since most rehabilitation programs involve physical movement. Imagined movement -the so-called motor imagery (MI) -has been shown to activate motor areas of the brain without physical movement. MI therefore offers an opportunity for early rehabilitation of stroke patients. MI, however, is not widely employed in clinical practice due to a lack of evidence-based research. Here, we review MI-based approaches to rehabilitation of stroke patients and immersive virtual reality (VR) technologies to potentially assist MI and thus, promote recovery of motor function.
Background Motor impairment is a common consequence of stroke causing difficulty in independent movement. The first month of post-stroke rehabilitation is the most effective period for recovery. Movement imagination, known as motor imagery, in combination with virtual reality may provide a way for stroke patients with severe motor disabilities to begin rehabilitation. Methods The aim of this study is to verify whether motor imagery and virtual reality help to activate stroke patients’ motor cortex. 16 acute/subacute (< 6 months) stroke patients participated in this study. All participants performed motor imagery of basketball shooting which involved the following tasks: listening to audio instruction only, watching a basketball shooting animation in 3D with audio, and also performing motor imagery afterwards. Electroencephalogram (EEG) was recorded for analysis of motor-related features of the brain such as power spectral analysis in the $$\alpha$$ α and $$\beta$$ β frequency bands and spectral entropy. 18 EEG channels over the motor cortex were used for all stroke patients. Results All results are normalised relative to all tasks for each participant. The power spectral densities peak near the $$\alpha$$ α band for all participants and also the $$\beta$$ β band for some participants. Tasks with instructions during motor imagery generally show greater power spectral peaks. The p-values of the Wilcoxon signed-rank test for band power comparison from the 18 EEG channels between different pairs of tasks show a 0.01 significance of rejecting the band powers being the same for most tasks done by stroke subjects. The motor cortex of most stroke patients is more active when virtual reality is involved during motor imagery as indicated by their respective scalp maps of band power and spectral entropy. Conclusion The resulting activation of stroke patient’s motor cortices in this study reveals evidence that it is induced by imagination of movement and virtual reality supports motor imagery. The framework of the current study also provides an efficient way to investigate motor imagery and virtual reality during post-stroke rehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.