Wireless sensor networks (WSNs) can be quickly and randomly deployed in any harsh and unattended environment and only authorized users are allowed to access reliable sensor nodes in WSNs with the aid of gateways (GWNs). Secure authentication models among the users, the sensor nodes and GWN are important research issues for ensuring communication security and data privacy in WSNs. In 2013, Xue et al. proposed a temporal-credential-based mutual authentication and key agreement scheme for WSNs. However, in this paper, we point out that Xue et al.'s scheme cannot resist stolen-verifier, insider, off-line password guessing, smart card lost problem and many logged-in users' attacks and these security weaknesses make the scheme inapplicable to practical WSN applications. To tackle these problems, we suggest a simple countermeasure to prevent proposed attacks while the other merits of Xue et al.'s authentication scheme are left unchanged.
Radio Frequency Identification (RFID) based solutions are widely used for providing many healthcare applications include patient monitoring, object traceability, drug administration system and telecare medicine information system (TMIS) etc. In order to reduce malpractices and ensure patient privacy, in 2015, Srivastava et al. proposed a hash based RFID tag authentication protocol in TMIS. Their protocol uses lightweight hash operation and synchronized secret value shared between back-end server and tag, which is more secure and efficient than other related RFID authentication protocols. Unfortunately, in this paper, we demonstrate that Srivastava et al.'s tag authentication protocol has a serious security problem in that an adversary may use the stolen/lost reader to connect to the medical back-end server that store information associated with tagged objects and this privacy damage causing the adversary could reveal medical data obtained from stolen/lost readers in a malicious way. Therefore, we propose a secure and efficient RFID tag authentication protocol to overcome security flaws and improve the system efficiency. Compared with Srivastava et al.'s protocol, the proposed protocol not only inherits the advantages of Srivastava et al.'s authentication protocol for TMIS but also provides better security with high system efficiency.
Recent advances in medical treatment and emergency applications, the need of integrating wireless body area network (WBAN) with cloud computing can be motivated by providing useful and real time information about patients' health state to the doctors and emergency staffs. WBAN is a set of body sensors carried by the patient to collect and transmit numerous health items to medical clouds via wireless and public communication channels. Therefore, a cloud-assisted WBAN facilitates response in case of emergency which can save patients' lives. Since the patient's data is sensitive and private, it is important to provide strong security and protection on the patient's medical data over public and insecure communication channels. In this paper, we address the challenge of participant authentication in mobile emergency medical care systems for patients supervision and propose a secure cloud-assisted architecture for accessing and monitoring health items collected by WBAN. For ensuring a high level of security and providing a mutual authentication property, chaotic maps based authentication and key agreement mechanisms are designed according to the concept of Diffie-Hellman key exchange, which depends on the CMBDLP and CMBDHP problems. Security and performance analyses show how the proposed system guaranteed the patient privacy and the system confidentiality of sensitive medical data while preserving the low computation property in medical treatment and remote medical monitoring.
Secure user authentication schemes in many e-Healthcare applications try to prevent unauthorized users from intruding the e-Healthcare systems and a remote user and a medical server can establish session keys for securing the subsequent communications. However, many schemes does not mask the users' identity information while constructing a login session between two or more parties, even though personal privacy of users is a significant topic for e-Healthcare systems. In order to preserve personal privacy of users, dynamic identity based authentication schemes are hiding user's real identity during the process of network communications and only the medical server knows login user's identity. In addition, most of the existing dynamic identity based authentication schemes ignore the inputs verification during login condition and this flaw may subject to inefficiency in the case of incorrect inputs in the login phase. Regarding the use of secure authentication mechanisms for e-Healthcare systems, this paper presents a new dynamic identity and chaotic maps based authentication scheme and a secure data protection approach is employed in every session to prevent illegal intrusions. The proposed scheme can not only quickly detect incorrect inputs during the phases of login and password change but also can invalidate the future use of a lost/stolen smart card. Compared the functionality and efficiency with other authentication schemes recently, the proposed scheme satisfies desirable security attributes and maintains acceptable efficiency in terms of the computational overheads for e-Healthcare systems.
Telecare medicine information system (TMIS) is widely used for providing a convenient and efficient communicating platform between patients at home and physicians at medical centers or home health care (HHC) organizations. To ensure patient privacy, in 2013, Hao et al. proposed a chaotic map based authentication scheme with user anonymity for TMIS. Later, Lee showed that Hao et al.'s scheme is in no provision for providing fairness in session key establishment and gave an efficient user authentication and key agreement scheme using smart cards, in which only few hashing and Chebyshev chaotic map operations are required. In addition, Jiang et al. discussed that Hao et al.'s scheme can not resist stolen smart card attack and they further presented an improved scheme which attempts to repair the security pitfalls found in Hao et al.'s scheme. In this paper, we found that both Lee's and Jiang et al.'s authentication schemes have a serious security problem in that a registered user's secret parameters may be intentionally exposed to many non-registered users and this problem causing the service misuse attack. Therefore, we propose a slight modification on Lee's scheme to prevent the shortcomings. Compared with previous schemes, our improved scheme not only inherits the advantages of Lee's and Jiang et al.'s authentication schemes for TMIS but also remedies the serious security weakness of not being able to withstand service misuse attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.