This paper proposes an evolutionary fuzzy lead-lag control approach for coordinated control of flexible AC transmission system (FACTS) devices in a multi-machine power system. The FACTS devices used are a thyristor-controlled series capacitor (TCSC) and a static var compensator (SVC), both of which are equipped with a fuzzy lead-lag controller to improve power system dynamic stability. The fuzzy lead-lag controller uses a fuzzy controller (FC) to adaptively determine the parameters of two lead-lag controllers at each control step according to the deviations of generator rotor speeds. This paper proposes an Advanced Continuous Ant Colony Optimization (ACACO) algorithm to optimize all of the free parameters in the FC, which avoids the time-consuming task of parameter selection by human experts.
The effectiveness and efficiency of the proposed evolutionary fuzzy lead-lag controller for oscillation damping control is verified through control of a multi-machine power system and comparisons with other lead-lag controllers and various population-based optimization algorithms.Index Terms-Ant colony optimization, flexible AC transmission system (FACTS), fuzzy control, static var compensator (SVC), swarm intelligence, thyristor controlled series capacitor (TCSC).
This paper proposes a reinforcement ant optimized fuzzy controller (FC) design method, called RAOFC, and applies it to wheeled-mobile-robot wall-following control under reinforcement learning environments. The inputs to the designed FC are range-finding sonar sensors, and the controller output is a robot steering angle. The antecedent part in each fuzzy rule uses interval type-2 fuzzy sets in order to increase FC robustness. No a priori assignment of fuzzy rules is necessary in RAOFC. An online aligned interval type-2 fuzzy clustering (AIT2FC) method is proposed to generate rules automatically. The AIT2FC not only flexibly partitions the input space but also reduces the number of fuzzy sets in each input dimension, which improves controller interpretability. The consequent part of each fuzzy rule is designed using Q-value aided ant colony optimization (QACO). The QACO approach selects the consequent part from a set of candidate actions according to ant pheromone trails and Q-values, both of whose values are updated using reinforcement signals. Simulations and experiments on mobile-robot wall-following control show the effectiveness and efficiency of the proposed RAOFC
This paper proposes a hierarchical cluster-based multispecies particle-swarm optimization (HCMSPSO) algorithm for fuzzy-system optimization. The objective of this paper is to learn Takagi-Sugeno-Kang (TSK) type fuzzy rules with high accuracy. In the HCMSPSO-designed fuzzy system (FS), each rule defines its own fuzzy sets, which implies that the number of fuzzy sets for each input variable is equal to the number of fuzzy rules. A swarm in HCMSPSO is clustered into multiple species at an upper hierarchical level, and each species is further clustered into multiple subspecies at a lower hierarchical level. For an FS consisting of r rules, r species (swarms) are formed in the upper level, where one species optimizes a single fuzzy rule. Initially, there are no species in HCMSPSO. An online cluster-based algorithm is proposed to generate new species (fuzzy rules) automatically. In the lower layer, subspecies within the same species are formed adaptively in each iteration during the particle update. Several simulations are conducted to verify HCMSPSO performance. Comparisons with other neural learning, genetic, and PSO algorithms demonstrate the superiority of HCMSPSO performance
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.