Table of contentsP001 - Sepsis impairs the capillary response within hypoxic capillaries and decreases erythrocyte oxygen-dependent ATP effluxR. M. Bateman, M. D. Sharpe, J. E. Jagger, C. G. EllisP002 - Lower serum immunoglobulin G2 level does not predispose to severe flu.J. Solé-Violán, M. López-Rodríguez, E. Herrera-Ramos, J. Ruíz-Hernández, L. Borderías, J. Horcajada, N. González-Quevedo, O. Rajas, M. Briones, F. Rodríguez de Castro, C. Rodríguez GallegoP003 - Brain protective effects of intravenous immunoglobulin through inhibition of complement activation and apoptosis in a rat model of sepsisF. Esen, G. Orhun, P. Ergin Ozcan, E. Senturk, C. Ugur Yilmaz, N. Orhan, N. Arican, M. Kaya, M. Kucukerden, M. Giris, U. Akcan, S. Bilgic Gazioglu, E. TuzunP004 - Adenosine a1 receptor dysfunction is associated with leukopenia: A possible mechanism for sepsis-induced leukopeniaR. Riff, O. Naamani, A. DouvdevaniP005 - Analysis of neutrophil by hyper spectral imaging - A preliminary reportR. Takegawa, H. Yoshida, T. Hirose, N. Yamamoto, H. Hagiya, M. Ojima, Y. Akeda, O. Tasaki, K. Tomono, T. ShimazuP006 - Chemiluminescent intensity assessed by eaa predicts the incidence of postoperative infectious complications following gastrointestinal surgeryS. Ono, T. Kubo, S. Suda, T. Ueno, T. IkedaP007 - Serial change of c1 inhibitor in patients with sepsis – A prospective observational studyT. Hirose, H. Ogura, H. Takahashi, M. Ojima, J. Kang, Y. Nakamura, T. Kojima, T. ShimazuP008 - Comparison of bacteremia and sepsis on sepsis related biomarkersT. Ikeda, S. Suda, Y. Izutani, T. Ueno, S. OnoP009 - The changes of procalcitonin levels in critical patients with abdominal septic shock during blood purificationT. Taniguchi, M. OP010 - Validation of a new sensitive point of care device for rapid measurement of procalcitoninC. Dinter, J. Lotz, B. Eilers, C. Wissmann, R. LottP011 - Infection biomarkers in primary care patients with acute respiratory tract infections – Comparison of procalcitonin and C-reactive proteinM. M. Meili, P. S. SchuetzP012 - Do we need a lower procalcitonin cut off?H. Hawa, M. Sharshir, M. Aburageila, N. SalahuddinP013 - The predictive role of C-reactive protein and procalcitonin biomarkers in central nervous system infections with extensively drug resistant bacteriaV. Chantziara, S. Georgiou, A. Tsimogianni, P. Alexandropoulos, A. Vassi, F. Lagiou, M. Valta, G. Micha, E. Chinou, G. MichaloudisP014 - Changes in endotoxin activity assay and procalcitonin levels after direct hemoperfusion with polymyxin-b immobilized fiberA. Kodaira, T. Ikeda, S. Ono, T. Ueno, S. Suda, Y. Izutani, H. ImaizumiP015 - Diagnostic usefullness of combination biomarkers on ICU admissionM. V. De la Torre-Prados, A. Garcia-De la Torre, A. Enguix-Armada, A. Puerto-Morlan, V. Perez-Valero, A. Garcia-AlcantaraP016 - Platelet function analysis utilising the PFA-100 does not predict infection, bacteraemia, sepsis or outcome in critically ill patientsN. Bolton, J. Dudziak, S. Bonney, A. Tridente, P. NeeP017 - Extracellular histone H3 levels are in...
Human adrenomedullin (hAM), a potent vasodilatory peptide originally identified in pheochromocytoma, has been shown to be present in various human tissues and circulate in human plasma. We measured plasma concentrations of immunoreactive hAM in patients with sepsis who had been admitted to intensive care unit (ICU). Plasma hAM concentrations in 12 septic patients upon entering the ICU were extremely elevated (107 +/- 139 fmol/ml: mean +/- SD) compared to those of 16 age-matched normal subjects (7.9 +/- 3 fmol/mL). Among 10 patients with normal renal function, plasma hAM levels either decreased or increased during the hospital course; the former group survived and the latter group succumbed. Two patients with acute renal failure had markedly elevated plasma hAM levels during the early course, which declined rapidly during the recovery course. High performance liquid chromatography of plasma extracts from one patient with acute renal failure revealed a single major component of immunoreactive hAM coeluting with authentic hAM (1-52) during acute and recovery phase. Plasma hAM concentration showed positive correlations with heart rate, right atrial pressure, and serum creatinine concentration, but not with other hemodynamic variables. These data suggest that a marked increase in circulating hAM in sepsis may be caused by its decreased clearance and/or its enhanced synthesis by multiple organ dysfunction, and that increased endogenous hAM may be involved in the mechanism of cardiovascular abnormalities associated with sepsis.
Endotoxin plays an important role in the pathogenesis of septic shock. Exposure of endothelial cells to endotoxin activates endothelial cells and increases the surface expression of adhesion molecules, markers of endothelial damage in organ dysfunction. Endotoxin adsorption therapy by polymyxin B-immobilized fiber column (PMX) hemoperfusion has been used for the treatment of septic shock patients. In this study, we measured plasma concentrations of endotoxin and soluble adhesion molecules in septic shock patients before and after the PMX treatment then observed on the relationships between actual duration of use and various outcomes. Sixteen patients with septic shock were studied. The 28-day mortality rate was 50%. The elevated plasma concentrations of endotoxin decreased after the PMX treatment in the survivors but not in the nonsurvivors. The norepinephrine dose and plasma concentrations of soluble endothelial leukocyte adhesion molecule 1 and soluble intercellular adhesion molecule 1 significantly (P < 0.05) decreased in the PMX greater-than-2-h (prolonged) group than in the PMX 2-h (conventional) group (-17.8 +/- 14.6 vs. -1.8 +/- 2.7 microg/min, -143.0 +/- 111.0 vs. 0 +/- 2.8 ng/mL, and -126.2 +/- 144.9 vs. 16.5 +/- 108.1 ng/mL, respectively). Changes in the PaO2-FiO2 ratio and the Sequential Organ Failure Assessment score were significantly (P < 0.05) more improved in the PMX greater-than-2-h group than in the PMX 2-h group (75.4 +/- 80.7 vs. 1.2 +/- 49.2 and -0.8 +/- 1.8 vs. 2.2 +/- 1.9 torr, respectively). We thus suggest that a longer duration of PMX treatment may improve the pulmonary oxygenation associated with decreased adhesion molecules in septic shock.
Endotoxin, an outer membrane component of gram-negative bacteria, plays an important role in the pathogenesis of septic shock. Endotoxin adsorption therapy by polymyxin B-immobilized fiber column hemoperfusion (PMX) has been used for the treatment of septic shock patients in Japan since 1994. The covalent binding of polymyxin B onto the surface of the polystyrene-based carrier fiber in PMX inactivates the endotoxin in the blood without exerting toxicity. This study was performed as a systematic review to evaluate the efficacy and mechanism of PMX treatment in patients with septic shock. The PubMed database and references from identified articles were used to search and review the literature relating to the efficacy and mechanism of PMX treatment in patients with septic shock. Polymyxin B-immobilized fiber column hemoperfusion adsorbed monocytes, activated neutrophils, and anandamide, as well as endotoxin through direct covalent bond, hydrophobic and ionic interactions, and hydrodynamics, and reduced the blood concentrations of inflammatory cytokines, plasminogen activator inhibitor 1 and adhesion molecules. Polymyxin B-immobilized fiber column hemoperfusion increased blood pressure and reduced the dosage requirements for vasopressive/inotropic agents. The meta-analysis showed that PMX treatment had beneficial effects on the hemodynamics, pulmonary oxygenation, and mortality. These beneficial effects may be attributable to the direct adsorption of endotoxin, monocytes, activated neutrophils, and anandamide, as well as indirect decrease in inflammatory cytokines and other mediators. Polymyxin B-immobilized fiber column hemoperfusion treatment has additional effects on reducing endothelial damage, proapoptotic activity, and immunosuppression. Further studies will be needed to confirm the efficacy and mechanism of PMX treatment in septic shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.