The main endogenous source of glutamine is de novo synthesis in striated muscle via the enzyme glutamine synthetase (GS). The mice in which GS is selectively but completely eliminated from striated muscle with the Cre-loxP strategy (GS-KO/M mice) are, nevertheless, healthy and fertile. Compared with controls, the circulating concentration and net production of glutamine across the hindquarter were not different in fed GS-KO/M mice. Only a ϳ3-fold higher escape of ammonia revealed the absence of GS in muscle. However, after 20 h of fasting, GS-KO/M mice were not able to mount the ϳ4-fold increase in glutamine production across the hindquarter that was observed in control mice. Instead, muscle ammonia production was ϳ5-fold higher than in control mice. The fasting-induced metabolic changes were transient and had returned to fed levels at 36 h of fasting. Glucose consumption and lactate and ketone-body production were similar in GS-KO/M and control mice. Challenging GS-KO/M and control mice with intravenous ammonia in stepwise increments revealed that normal muscle can detoxify ϳ2.5 mol ammonia/g muscle⅐h in a muscle GS-dependent manner, with simultaneous accumulation of urea, whereas GS-KO/M mice responded with accumulation of glutamine and other amino acids but not urea. These findings demonstrate that GS in muscle is dispensable in fed mice but plays a key role in mounting the adaptive response to fasting by transiently facilitating the production of glutamine. Furthermore, muscle GS contributes to ammonia detoxification and urea synthesis. These functions are apparently not vital as long as other organs function normally.Glutamine is among the most abundant free amino acids in mammals. Almost 90% of the daily glutamine production originates from endogenous sources, because 30 -35% of all nitrogen derived from protein catabolism is transported in the form of glutamine (1, 2). This glutamine can serve, after transport via the vasculature, as an oxidative fuel for enterocytes and immune cells, a precursor for purine and pyrimidine synthesis, a modulator of protein turnover, or an intermediate for gluconeogenesis and acid-base balance. The only enzyme capable of glutamine synthesis is glutamine synthetase (L-glutamate: ammonia ligase (ADP); EC 6.3.1.2). Because of the prominent role of glutamine in the interorgan transport of carbon and nitrogen, the plasma glutamine pool is turning over very rapidly (3). Glutamine tracer kinetic studies in humans have shown that ϳ50% of plasma glutamine is oxidized and that of the remainder, 10 -20% is used for gluconeogenesis, and most of the rest is used for protein synthesis and incorporation into macromolecules (2).Thus far, the irreversible GS 5 inhibitor methionine sulfoximine (MSO) was the tool of choice to interfere with cellular glutamine synthesis. Administration of MSO for 4 -6 days results in a 40 -50% decrease in plasma glutamine levels, a 55-65% decrease in intracellular muscle glutamine, and a 50% increase in muscle ammonia levels (4 -6). An inherent drawback of the...
People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
In both obesity and chronic obstructive pulmonary disease (COPD), altered oxygen tension in adipose tissue (AT) has been suggested to evoke AT dysfunction, subsequently contributing to metabolic complications. Studying the effects of chronic hypoxia on AT function will add to our understanding of the complex pathophysiology of alterations in AT inflammation, metabolism, and mass observed in both obesity and COPD. This study investigated the inflammatory and metabolic profile of AT after chronic hypoxia. Fifty-two-week-old C57Bl/6J mice were exposed to chronic hypoxia (8% O2) or normoxia for 21 days, after which AT and plasma were collected. Adipocyte size, AT gene expression of inflammatory and metabolic genes, AT macrophage density, and circulating adipokine concentrations were measured. Food intake and body weight decreased upon initiation of hypoxia. However, whereas food intake normalized after 10 days, lower body weight persisted. Chronic hypoxia markedly reduced AT mass and adipocyte size. AT macrophage density and expression of Emr1, Ccl2, Lep, and Tnf were decreased, whereas Serpine1 and Adipoq expression levels were increased after chronic hypoxia. Concomitantly, chronic hypoxia increased AT expression of regulators of oxidative metabolism and markers of mitochondrial function and lipolysis. Circulating IL-6 and PAI-1 concentrations were increased, and leptin concentration was decreased after chronic hypoxia. Chronic hypoxia is associated with decreased rather than increased AT inflammation, and markedly decreased fat mass and adipocyte size. Furthermore, our data indicate that chronic hypoxia is accompanied by significant alterations in AT metabolic gene expression, pointing toward an enhanced AT metabolic rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.